Loading…
Integrated pretreatment with capacitive deionization for reverse osmosis reject recovery from water reclamation plant
Reverse osmosis (RO) reject recovery from the water reclamation process was demonstrated feasible using an integrated pretreatment scheme followed by the Capacitive Deionization (CDI) process. The RO reject had an average total dissolved solids (TDS) of 1276 ± 166 mg/L. Water recovery of 85% with wa...
Saved in:
Published in: | Water research (Oxford) 2009-10, Vol.43 (18), p.4769-4777 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reverse osmosis (RO) reject recovery from the water reclamation process was demonstrated feasible using an integrated pretreatment scheme followed by the Capacitive Deionization (CDI) process. The RO reject had an average total dissolved solids (TDS) of 1276
±
166
mg/L. Water recovery of 85% with water quality comparable with the RO feed was achieved. Pretreatments using biological activated carbon (BAC) and BAC–ultrafiltration (UF) attained total organic carbon (TOC) removal efficiencies of 23.5
±
6.0% and 39.9
±
9.0%, respectively. Organics removal of RO reject was attributed to simultaneous adsorption and biodegradation in the BAC pretreatment, while further biodegradation in the submerged UF membrane tank provided additional organics removal. Membrane and CDI fouling was reduced by pH adjustment of the pretreated RO reject to approximately 6.5, which prolonged the CDI operation time by at least two times. The CDI process was able to achieve more than 88 and 87% TDS and ion removals, respectively, while PO
4
3− and TOC removals were at 52–81% and 50–63%, respectively. |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2009.08.006 |