Loading…
Positive and negative integrable hierarchies, associated conservation laws and Darboux transformation
Two hierarchies of integrable positive and negative lattice equations in connection with a new discrete isospectral problem are derived. It is shown that they correspond to positive and negative power expansions respectively of Lax operators with respect to the spectral parameter, and each equation...
Saved in:
Published in: | Journal of computational and applied mathematics 2009-12, Vol.233 (4), p.1096-1107 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two hierarchies of integrable positive and negative lattice equations in connection with a new discrete isospectral problem are derived. It is shown that they correspond to positive and negative power expansions respectively of Lax operators with respect to the spectral parameter, and each equation in the resulting hierarchies is Liouville integrable. Moreover, infinitely many conservation laws of corresponding positive lattice equations are obtained in a direct way. Finally, a Darboux transformation is established with the help of gauge transformations of Lax pairs for the typical lattice soliton equations, by means of which the exact solutions are given. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2009.09.009 |