Loading…
Influence of system operation method on CO2 emissions of PV/solar heat/cogeneration system
A PV/solar heat/cogeneration system is assumed to be installed in a hotel. The system is operated with various operation methods: CO2 minimum operation, fees minimum operation, seasonal operation, daytime operation, and heat demand following operation. Of these five operations, the former two are vi...
Saved in:
Published in: | Electrical engineering in Japan 2008-07, Vol.164 (2), p.54-63 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A PV/solar heat/cogeneration system is assumed to be installed in a hotel. The system is operated with various operation methods: CO2 minimum operation, fees minimum operation, seasonal operation, daytime operation, and heat demand following operation. Of these five operations, the former two are virtual operations that are operated with the dynamic programming method, and the latter three are actual operations. Computer simulation is implemented using hourly data of solar radiation intensity, atmospheric temperature, electric, cooling, heating, and hot water supply demands for one year, and the life‐cycle CO2 emission and the total cost are calculated for every operation. The calculation results show that the two virtual and the three actual operations reduce the life‐cycle CO2 emission by 21% and 13% compared with the conventional system, respectively. In regard to both the CO2 emission and the cost, there is no significant difference between the two virtual operation methods or among the three actual operation methods. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 164(2): 54–63, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.20414 |
---|---|
ISSN: | 0424-7760 1520-6416 |
DOI: | 10.1002/eej.20414 |