Loading…

Chernobyl radionuclides in a Black Sea sediment trap

The Chernobyl nuclear power station accident released large quantities of vaporized radionuclides, and, to a lesser extent, mechanically released small (less than 1-10 micron) aerosol particles. The total release of radioactivity is estimated to be out of the order of 1-2 x 10(18) Bq (3-5 x 10(7) Ci...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 1987-10, Vol.329 (6142), p.825-828
Main Authors: Buesseler, K. O, Livingston, H. D, Honjo, S, Hay, B. J, Manganini, S. J, Degens, E, Ittekkot, V, Izdar, E, Konuk, T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Chernobyl nuclear power station accident released large quantities of vaporized radionuclides, and, to a lesser extent, mechanically released small (less than 1-10 micron) aerosol particles. The total release of radioactivity is estimated to be out of the order of 1-2 x 10(18) Bq (3-5 x 10(7) Ci) not allowing for releases of the xenon and krypton gases. The 137Cs releases of 3.8 x 10(16) Bq from Chernobyl can be compared to 1.3 x 10(18) Bq 137Cs released due to atmospheric nuclear weapons testing. Chernobyl-derived radionuclides can be used as transient tracers to study physical and biogeochemical processes. Initial measurements of fallout Chernobyl radionuclides from a time-series sediment trap at 1,071 m during June-September 1986 in the southern Black Sea are presented. The specific activities of 137Cs, 144Ce and 106Ru in the trap samples (0.5-2, 4-12 and 6-13 Bq g-1) are independent of the particle flux while their relative activities reflect their rates of scavenging in the order Ce greater than Ru greater than Cs.
ISSN:0028-0836
1476-4687
DOI:10.1038/329825a0