Loading…

Adaptive logarithmic discretization for numerical renormalization group methods

The problem of the logarithmic discretization of an arbitrary positive function (such as the density of states) is studied in general terms. Logarithmic discretization has arbitrary high resolution around some chosen point (such as Fermi level) and it finds application, for example, in the numerical...

Full description

Saved in:
Bibliographic Details
Published in:Computer physics communications 2009-08, Vol.180 (8), p.1271-1276
Main Author: Zitko, R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem of the logarithmic discretization of an arbitrary positive function (such as the density of states) is studied in general terms. Logarithmic discretization has arbitrary high resolution around some chosen point (such as Fermi level) and it finds application, for example, in the numerical renormalization group (NRG) approach to quantum impurity problems (Kondo model), where the continuum of the conduction band states needs to be reduced to a finite number of levels with good sampling near the Fermi level. The discretization schemes under discussion are required to reproduce the original function after averaging over different interleaved discretization meshes, thus systematic deviations which appear in the conventional logarithmic discretization are eliminated. An improved scheme is proposed in which the discretization-mesh points themselves are determined in an adaptive way; they are denser in the regions where the function has higher values. Such schemes help in reducing the residual numeric artefacts in NRG calculations in situations where the density of states approaches zero over extended intervals. A reference implementation of the solver for the differential equations which determine the full set of discretization coefficients is also described.
ISSN:0010-4655
1879-2944
DOI:10.1016/j.cpc.2009.02.007