Loading…

Modeling of evolving damage in high temperature polymer matrix composites subjected to thermal oxidation

This paper describes mechanism-based modeling of damage evolution in high temperature polymer matrix composites (HTPMC) under thermo-oxidative aging conditions. Specifically, a multi-scale model based on micro-mechanics analysis in conjunction with continuum damage mechanics (CDM) is developed to si...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2008-10, Vol.43 (20), p.6651-6660
Main Authors: Roy, Samit, Singh, Sushil, Schoeppner, Gregory A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes mechanism-based modeling of damage evolution in high temperature polymer matrix composites (HTPMC) under thermo-oxidative aging conditions. Specifically, a multi-scale model based on micro-mechanics analysis in conjunction with continuum damage mechanics (CDM) is developed to simulate the accelerated fiber–matrix debond growth in the longitudinal direction of a unidirectional HTPMC. Using this approach, one can relate the behavior of composites at the micro-level (representative volume element) to the macro-level (structural element) in a computationally tractable manner. Thermo-oxidative aging is simulated with diffusion-reaction model in which temperature, oxygen concentration, and weight loss effects are considered. For debond growth simulation, a model based on Darcy’s laws for oxygen permeation in the fiber–matrix interface is employed, that, when coupled with polymer shrinkage, provides a mechanism for permeation-controlled debond growth in HTPMC. Benchmark of model prediction with experimental observations of oxidation layer growth is presented, together with a laminate thermo-oxidative life prediction model based on CDM to demonstrate proof-of-concept.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-008-2691-1