Loading…
Models and Algorithmic Limits for an ECC-Based Approach to Hardening Sub-100-nm SRAMs
A mathematical bit error rate (BER) model for upsets in memories protected by error-correcting codes (ECCs) and scrubbing is derived. This model is compared with expected upset rates for sub-100-nm SRAM memories in space environments. Because sub-100-nm SRAM memory cells can be upset by a critical c...
Saved in:
Published in: | IEEE transactions on nuclear science 2007-08, Vol.54 (4), p.935-945 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A mathematical bit error rate (BER) model for upsets in memories protected by error-correcting codes (ECCs) and scrubbing is derived. This model is compared with expected upset rates for sub-100-nm SRAM memories in space environments. Because sub-100-nm SRAM memory cells can be upset by a critical charge (Q crit ) of 1.1 fC or less, they may exhibit significantly higher upset rates than those reported in earlier technologies. Because of this, single-bit-correcting ECCs may become impractical due to memory scrubbing rate limitations. The overhead needed for protecting memories with a triple-bit-correcting ECC is examined relative to an approximate 2X ldquoprocess generationrdquo scaling penalty in area, speed, and power. |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2007.892119 |