Loading…
Radial Plasma Dynamic in Sequential Pinches
Plasma dynamic and confinement characteristics were investigated with magnetic probes in a theta pinch operating with oscillatory current waveform and hydrogen gas at pressure between 45 and 150 mtorr. Current-sheath implosion was evident after the third half cycle until sixth half cycle when the ex...
Saved in:
Published in: | IEEE transactions on plasma science 2009-11, Vol.37 (11), p.2186-2190 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-dd354eda0e8d157d901d43a03e4791f640f01cdaa1a2d48213da460a22bdc7ad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-dd354eda0e8d157d901d43a03e4791f640f01cdaa1a2d48213da460a22bdc7ad3 |
container_end_page | 2190 |
container_issue | 11 |
container_start_page | 2186 |
container_title | IEEE transactions on plasma science |
container_volume | 37 |
creator | Kayama, M.E. Clemente, R.A. Honda, R.Y. Dobrowolsky, M.S. |
description | Plasma dynamic and confinement characteristics were investigated with magnetic probes in a theta pinch operating with oscillatory current waveform and hydrogen gas at pressure between 45 and 150 mtorr. Current-sheath implosion was evident after the third half cycle until sixth half cycle when the external current has practically decayed. Each cycle starts with a trapped reversed magnetic field residual from the previous half cycle. Probe-signal fluctuations due to radial hydromagnetic oscillations were also observed. A modified snowplow model including an initial bias field and a flux-loss term gives a reasonable description of the experimental results for plasma radial dynamic and internal trapped field. Typical equilibrium-density profiles are of a hollow type with maximum density around one-third of the discharge-tube radius. Estimations from these profiles show small variation of temperature and density among half cycles in discharges at low pressure. At high-pressure regime, the temperature strongly drops in subsequent half cycles, while the density increases. |
doi_str_mv | 10.1109/TPS.2009.2031868 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_36345896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5291759</ieee_id><sourcerecordid>1900724961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-dd354eda0e8d157d901d43a03e4791f640f01cdaa1a2d48213da460a22bdc7ad3</originalsourceid><addsrcrecordid>eNp9kM1PAjEQxRujiYjeTbwQE_VgFjuddrc9GvxMSCSC52Zsu3HJsuAWDvz3FiEcPHiZObzfm4_H2DnwPgA3d5PRuC84N6kg6FwfsA4YNJnBQh2yTlIwQw14zE5inHIOUnHRYbfv5Cuqe6Oa4ox6D-uGZpXrVU1vHL5XoVn-ilXjvkI8ZUcl1TGc7XqXfTw9TgYv2fDt-XVwP8ycRL7MvEclgycetAdVeMPBSySOQRYGylzykoPzREDCSy0APcmckxCf3hXksctutnMX7TzdEJd2VkUX6pqaMF9Fq3OjFYpCJPL6XxJzlEqbPIGXf8DpfNU26QsLRkGhhcQE8S3k2nmMbSjtoq1m1K4tcLsJ2aaQ7SZkuws5Wa52cyk6qsuWGlfFvU8IaYTKN_svtlwVQtjLShgolMEfM7uCnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195178243</pqid></control><display><type>article</type><title>Radial Plasma Dynamic in Sequential Pinches</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kayama, M.E. ; Clemente, R.A. ; Honda, R.Y. ; Dobrowolsky, M.S.</creator><creatorcontrib>Kayama, M.E. ; Clemente, R.A. ; Honda, R.Y. ; Dobrowolsky, M.S.</creatorcontrib><description>Plasma dynamic and confinement characteristics were investigated with magnetic probes in a theta pinch operating with oscillatory current waveform and hydrogen gas at pressure between 45 and 150 mtorr. Current-sheath implosion was evident after the third half cycle until sixth half cycle when the external current has practically decayed. Each cycle starts with a trapped reversed magnetic field residual from the previous half cycle. Probe-signal fluctuations due to radial hydromagnetic oscillations were also observed. A modified snowplow model including an initial bias field and a flux-loss term gives a reasonable description of the experimental results for plasma radial dynamic and internal trapped field. Typical equilibrium-density profiles are of a hollow type with maximum density around one-third of the discharge-tube radius. Estimations from these profiles show small variation of temperature and density among half cycles in discharges at low pressure. At high-pressure regime, the temperature strongly drops in subsequent half cycles, while the density increases.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2009.2031868</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Density ; Electric and magnetic measurements ; Electric discharges ; Exact sciences and technology ; Fluctuations ; Gases ; Hydrogen ; Implosions ; Low pressure ; Magnetic confinement ; Magnetic fields ; Magnetic-field measurement ; Magnetism ; Magnetohydrodynamics ; Mathematical models ; modeling ; Oscillations ; Oscillators ; Other gas discharges ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma confinement ; Plasma diagnostic techniques and instrumentation ; Plasma dynamics ; plasma generation ; plasma pinch ; Plasma production and heating ; Plasma properties ; Plasma sources ; Plasma temperature ; Plasma waves ; Probes ; Waveforms</subject><ispartof>IEEE transactions on plasma science, 2009-11, Vol.37 (11), p.2186-2190</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-dd354eda0e8d157d901d43a03e4791f640f01cdaa1a2d48213da460a22bdc7ad3</citedby><cites>FETCH-LOGICAL-c430t-dd354eda0e8d157d901d43a03e4791f640f01cdaa1a2d48213da460a22bdc7ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5291759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22492566$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kayama, M.E.</creatorcontrib><creatorcontrib>Clemente, R.A.</creatorcontrib><creatorcontrib>Honda, R.Y.</creatorcontrib><creatorcontrib>Dobrowolsky, M.S.</creatorcontrib><title>Radial Plasma Dynamic in Sequential Pinches</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Plasma dynamic and confinement characteristics were investigated with magnetic probes in a theta pinch operating with oscillatory current waveform and hydrogen gas at pressure between 45 and 150 mtorr. Current-sheath implosion was evident after the third half cycle until sixth half cycle when the external current has practically decayed. Each cycle starts with a trapped reversed magnetic field residual from the previous half cycle. Probe-signal fluctuations due to radial hydromagnetic oscillations were also observed. A modified snowplow model including an initial bias field and a flux-loss term gives a reasonable description of the experimental results for plasma radial dynamic and internal trapped field. Typical equilibrium-density profiles are of a hollow type with maximum density around one-third of the discharge-tube radius. Estimations from these profiles show small variation of temperature and density among half cycles in discharges at low pressure. At high-pressure regime, the temperature strongly drops in subsequent half cycles, while the density increases.</description><subject>Density</subject><subject>Electric and magnetic measurements</subject><subject>Electric discharges</subject><subject>Exact sciences and technology</subject><subject>Fluctuations</subject><subject>Gases</subject><subject>Hydrogen</subject><subject>Implosions</subject><subject>Low pressure</subject><subject>Magnetic confinement</subject><subject>Magnetic fields</subject><subject>Magnetic-field measurement</subject><subject>Magnetism</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Oscillations</subject><subject>Oscillators</subject><subject>Other gas discharges</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma confinement</subject><subject>Plasma diagnostic techniques and instrumentation</subject><subject>Plasma dynamics</subject><subject>plasma generation</subject><subject>plasma pinch</subject><subject>Plasma production and heating</subject><subject>Plasma properties</subject><subject>Plasma sources</subject><subject>Plasma temperature</subject><subject>Plasma waves</subject><subject>Probes</subject><subject>Waveforms</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kM1PAjEQxRujiYjeTbwQE_VgFjuddrc9GvxMSCSC52Zsu3HJsuAWDvz3FiEcPHiZObzfm4_H2DnwPgA3d5PRuC84N6kg6FwfsA4YNJnBQh2yTlIwQw14zE5inHIOUnHRYbfv5Cuqe6Oa4ox6D-uGZpXrVU1vHL5XoVn-ilXjvkI8ZUcl1TGc7XqXfTw9TgYv2fDt-XVwP8ycRL7MvEclgycetAdVeMPBSySOQRYGylzykoPzREDCSy0APcmckxCf3hXksctutnMX7TzdEJd2VkUX6pqaMF9Fq3OjFYpCJPL6XxJzlEqbPIGXf8DpfNU26QsLRkGhhcQE8S3k2nmMbSjtoq1m1K4tcLsJ2aaQ7SZkuws5Wa52cyk6qsuWGlfFvU8IaYTKN_svtlwVQtjLShgolMEfM7uCnA</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Kayama, M.E.</creator><creator>Clemente, R.A.</creator><creator>Honda, R.Y.</creator><creator>Dobrowolsky, M.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20091101</creationdate><title>Radial Plasma Dynamic in Sequential Pinches</title><author>Kayama, M.E. ; Clemente, R.A. ; Honda, R.Y. ; Dobrowolsky, M.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-dd354eda0e8d157d901d43a03e4791f640f01cdaa1a2d48213da460a22bdc7ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Density</topic><topic>Electric and magnetic measurements</topic><topic>Electric discharges</topic><topic>Exact sciences and technology</topic><topic>Fluctuations</topic><topic>Gases</topic><topic>Hydrogen</topic><topic>Implosions</topic><topic>Low pressure</topic><topic>Magnetic confinement</topic><topic>Magnetic fields</topic><topic>Magnetic-field measurement</topic><topic>Magnetism</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Oscillations</topic><topic>Oscillators</topic><topic>Other gas discharges</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma confinement</topic><topic>Plasma diagnostic techniques and instrumentation</topic><topic>Plasma dynamics</topic><topic>plasma generation</topic><topic>plasma pinch</topic><topic>Plasma production and heating</topic><topic>Plasma properties</topic><topic>Plasma sources</topic><topic>Plasma temperature</topic><topic>Plasma waves</topic><topic>Probes</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kayama, M.E.</creatorcontrib><creatorcontrib>Clemente, R.A.</creatorcontrib><creatorcontrib>Honda, R.Y.</creatorcontrib><creatorcontrib>Dobrowolsky, M.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kayama, M.E.</au><au>Clemente, R.A.</au><au>Honda, R.Y.</au><au>Dobrowolsky, M.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radial Plasma Dynamic in Sequential Pinches</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>37</volume><issue>11</issue><spage>2186</spage><epage>2190</epage><pages>2186-2190</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Plasma dynamic and confinement characteristics were investigated with magnetic probes in a theta pinch operating with oscillatory current waveform and hydrogen gas at pressure between 45 and 150 mtorr. Current-sheath implosion was evident after the third half cycle until sixth half cycle when the external current has practically decayed. Each cycle starts with a trapped reversed magnetic field residual from the previous half cycle. Probe-signal fluctuations due to radial hydromagnetic oscillations were also observed. A modified snowplow model including an initial bias field and a flux-loss term gives a reasonable description of the experimental results for plasma radial dynamic and internal trapped field. Typical equilibrium-density profiles are of a hollow type with maximum density around one-third of the discharge-tube radius. Estimations from these profiles show small variation of temperature and density among half cycles in discharges at low pressure. At high-pressure regime, the temperature strongly drops in subsequent half cycles, while the density increases.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2009.2031868</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2009-11, Vol.37 (11), p.2186-2190 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_miscellaneous_36345896 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Density Electric and magnetic measurements Electric discharges Exact sciences and technology Fluctuations Gases Hydrogen Implosions Low pressure Magnetic confinement Magnetic fields Magnetic-field measurement Magnetism Magnetohydrodynamics Mathematical models modeling Oscillations Oscillators Other gas discharges Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma Plasma confinement Plasma diagnostic techniques and instrumentation Plasma dynamics plasma generation plasma pinch Plasma production and heating Plasma properties Plasma sources Plasma temperature Plasma waves Probes Waveforms |
title | Radial Plasma Dynamic in Sequential Pinches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radial%20Plasma%20Dynamic%20in%20Sequential%20Pinches&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Kayama,%20M.E.&rft.date=2009-11-01&rft.volume=37&rft.issue=11&rft.spage=2186&rft.epage=2190&rft.pages=2186-2190&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2009.2031868&rft_dat=%3Cproquest_ieee_%3E1900724961%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-dd354eda0e8d157d901d43a03e4791f640f01cdaa1a2d48213da460a22bdc7ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195178243&rft_id=info:pmid/&rft_ieee_id=5291759&rfr_iscdi=true |