Loading…

Radial Plasma Dynamic in Sequential Pinches

Plasma dynamic and confinement characteristics were investigated with magnetic probes in a theta pinch operating with oscillatory current waveform and hydrogen gas at pressure between 45 and 150 mtorr. Current-sheath implosion was evident after the third half cycle until sixth half cycle when the ex...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2009-11, Vol.37 (11), p.2186-2190
Main Authors: Kayama, M.E., Clemente, R.A., Honda, R.Y., Dobrowolsky, M.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-dd354eda0e8d157d901d43a03e4791f640f01cdaa1a2d48213da460a22bdc7ad3
cites cdi_FETCH-LOGICAL-c430t-dd354eda0e8d157d901d43a03e4791f640f01cdaa1a2d48213da460a22bdc7ad3
container_end_page 2190
container_issue 11
container_start_page 2186
container_title IEEE transactions on plasma science
container_volume 37
creator Kayama, M.E.
Clemente, R.A.
Honda, R.Y.
Dobrowolsky, M.S.
description Plasma dynamic and confinement characteristics were investigated with magnetic probes in a theta pinch operating with oscillatory current waveform and hydrogen gas at pressure between 45 and 150 mtorr. Current-sheath implosion was evident after the third half cycle until sixth half cycle when the external current has practically decayed. Each cycle starts with a trapped reversed magnetic field residual from the previous half cycle. Probe-signal fluctuations due to radial hydromagnetic oscillations were also observed. A modified snowplow model including an initial bias field and a flux-loss term gives a reasonable description of the experimental results for plasma radial dynamic and internal trapped field. Typical equilibrium-density profiles are of a hollow type with maximum density around one-third of the discharge-tube radius. Estimations from these profiles show small variation of temperature and density among half cycles in discharges at low pressure. At high-pressure regime, the temperature strongly drops in subsequent half cycles, while the density increases.
doi_str_mv 10.1109/TPS.2009.2031868
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_36345896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5291759</ieee_id><sourcerecordid>1900724961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-dd354eda0e8d157d901d43a03e4791f640f01cdaa1a2d48213da460a22bdc7ad3</originalsourceid><addsrcrecordid>eNp9kM1PAjEQxRujiYjeTbwQE_VgFjuddrc9GvxMSCSC52Zsu3HJsuAWDvz3FiEcPHiZObzfm4_H2DnwPgA3d5PRuC84N6kg6FwfsA4YNJnBQh2yTlIwQw14zE5inHIOUnHRYbfv5Cuqe6Oa4ox6D-uGZpXrVU1vHL5XoVn-ilXjvkI8ZUcl1TGc7XqXfTw9TgYv2fDt-XVwP8ycRL7MvEclgycetAdVeMPBSySOQRYGylzykoPzREDCSy0APcmckxCf3hXksctutnMX7TzdEJd2VkUX6pqaMF9Fq3OjFYpCJPL6XxJzlEqbPIGXf8DpfNU26QsLRkGhhcQE8S3k2nmMbSjtoq1m1K4tcLsJ2aaQ7SZkuws5Wa52cyk6qsuWGlfFvU8IaYTKN_svtlwVQtjLShgolMEfM7uCnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195178243</pqid></control><display><type>article</type><title>Radial Plasma Dynamic in Sequential Pinches</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kayama, M.E. ; Clemente, R.A. ; Honda, R.Y. ; Dobrowolsky, M.S.</creator><creatorcontrib>Kayama, M.E. ; Clemente, R.A. ; Honda, R.Y. ; Dobrowolsky, M.S.</creatorcontrib><description>Plasma dynamic and confinement characteristics were investigated with magnetic probes in a theta pinch operating with oscillatory current waveform and hydrogen gas at pressure between 45 and 150 mtorr. Current-sheath implosion was evident after the third half cycle until sixth half cycle when the external current has practically decayed. Each cycle starts with a trapped reversed magnetic field residual from the previous half cycle. Probe-signal fluctuations due to radial hydromagnetic oscillations were also observed. A modified snowplow model including an initial bias field and a flux-loss term gives a reasonable description of the experimental results for plasma radial dynamic and internal trapped field. Typical equilibrium-density profiles are of a hollow type with maximum density around one-third of the discharge-tube radius. Estimations from these profiles show small variation of temperature and density among half cycles in discharges at low pressure. At high-pressure regime, the temperature strongly drops in subsequent half cycles, while the density increases.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2009.2031868</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Density ; Electric and magnetic measurements ; Electric discharges ; Exact sciences and technology ; Fluctuations ; Gases ; Hydrogen ; Implosions ; Low pressure ; Magnetic confinement ; Magnetic fields ; Magnetic-field measurement ; Magnetism ; Magnetohydrodynamics ; Mathematical models ; modeling ; Oscillations ; Oscillators ; Other gas discharges ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma confinement ; Plasma diagnostic techniques and instrumentation ; Plasma dynamics ; plasma generation ; plasma pinch ; Plasma production and heating ; Plasma properties ; Plasma sources ; Plasma temperature ; Plasma waves ; Probes ; Waveforms</subject><ispartof>IEEE transactions on plasma science, 2009-11, Vol.37 (11), p.2186-2190</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-dd354eda0e8d157d901d43a03e4791f640f01cdaa1a2d48213da460a22bdc7ad3</citedby><cites>FETCH-LOGICAL-c430t-dd354eda0e8d157d901d43a03e4791f640f01cdaa1a2d48213da460a22bdc7ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5291759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22492566$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kayama, M.E.</creatorcontrib><creatorcontrib>Clemente, R.A.</creatorcontrib><creatorcontrib>Honda, R.Y.</creatorcontrib><creatorcontrib>Dobrowolsky, M.S.</creatorcontrib><title>Radial Plasma Dynamic in Sequential Pinches</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Plasma dynamic and confinement characteristics were investigated with magnetic probes in a theta pinch operating with oscillatory current waveform and hydrogen gas at pressure between 45 and 150 mtorr. Current-sheath implosion was evident after the third half cycle until sixth half cycle when the external current has practically decayed. Each cycle starts with a trapped reversed magnetic field residual from the previous half cycle. Probe-signal fluctuations due to radial hydromagnetic oscillations were also observed. A modified snowplow model including an initial bias field and a flux-loss term gives a reasonable description of the experimental results for plasma radial dynamic and internal trapped field. Typical equilibrium-density profiles are of a hollow type with maximum density around one-third of the discharge-tube radius. Estimations from these profiles show small variation of temperature and density among half cycles in discharges at low pressure. At high-pressure regime, the temperature strongly drops in subsequent half cycles, while the density increases.</description><subject>Density</subject><subject>Electric and magnetic measurements</subject><subject>Electric discharges</subject><subject>Exact sciences and technology</subject><subject>Fluctuations</subject><subject>Gases</subject><subject>Hydrogen</subject><subject>Implosions</subject><subject>Low pressure</subject><subject>Magnetic confinement</subject><subject>Magnetic fields</subject><subject>Magnetic-field measurement</subject><subject>Magnetism</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Oscillations</subject><subject>Oscillators</subject><subject>Other gas discharges</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma confinement</subject><subject>Plasma diagnostic techniques and instrumentation</subject><subject>Plasma dynamics</subject><subject>plasma generation</subject><subject>plasma pinch</subject><subject>Plasma production and heating</subject><subject>Plasma properties</subject><subject>Plasma sources</subject><subject>Plasma temperature</subject><subject>Plasma waves</subject><subject>Probes</subject><subject>Waveforms</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kM1PAjEQxRujiYjeTbwQE_VgFjuddrc9GvxMSCSC52Zsu3HJsuAWDvz3FiEcPHiZObzfm4_H2DnwPgA3d5PRuC84N6kg6FwfsA4YNJnBQh2yTlIwQw14zE5inHIOUnHRYbfv5Cuqe6Oa4ox6D-uGZpXrVU1vHL5XoVn-ilXjvkI8ZUcl1TGc7XqXfTw9TgYv2fDt-XVwP8ycRL7MvEclgycetAdVeMPBSySOQRYGylzykoPzREDCSy0APcmckxCf3hXksctutnMX7TzdEJd2VkUX6pqaMF9Fq3OjFYpCJPL6XxJzlEqbPIGXf8DpfNU26QsLRkGhhcQE8S3k2nmMbSjtoq1m1K4tcLsJ2aaQ7SZkuws5Wa52cyk6qsuWGlfFvU8IaYTKN_svtlwVQtjLShgolMEfM7uCnA</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Kayama, M.E.</creator><creator>Clemente, R.A.</creator><creator>Honda, R.Y.</creator><creator>Dobrowolsky, M.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20091101</creationdate><title>Radial Plasma Dynamic in Sequential Pinches</title><author>Kayama, M.E. ; Clemente, R.A. ; Honda, R.Y. ; Dobrowolsky, M.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-dd354eda0e8d157d901d43a03e4791f640f01cdaa1a2d48213da460a22bdc7ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Density</topic><topic>Electric and magnetic measurements</topic><topic>Electric discharges</topic><topic>Exact sciences and technology</topic><topic>Fluctuations</topic><topic>Gases</topic><topic>Hydrogen</topic><topic>Implosions</topic><topic>Low pressure</topic><topic>Magnetic confinement</topic><topic>Magnetic fields</topic><topic>Magnetic-field measurement</topic><topic>Magnetism</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Oscillations</topic><topic>Oscillators</topic><topic>Other gas discharges</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma confinement</topic><topic>Plasma diagnostic techniques and instrumentation</topic><topic>Plasma dynamics</topic><topic>plasma generation</topic><topic>plasma pinch</topic><topic>Plasma production and heating</topic><topic>Plasma properties</topic><topic>Plasma sources</topic><topic>Plasma temperature</topic><topic>Plasma waves</topic><topic>Probes</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kayama, M.E.</creatorcontrib><creatorcontrib>Clemente, R.A.</creatorcontrib><creatorcontrib>Honda, R.Y.</creatorcontrib><creatorcontrib>Dobrowolsky, M.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kayama, M.E.</au><au>Clemente, R.A.</au><au>Honda, R.Y.</au><au>Dobrowolsky, M.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radial Plasma Dynamic in Sequential Pinches</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>37</volume><issue>11</issue><spage>2186</spage><epage>2190</epage><pages>2186-2190</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Plasma dynamic and confinement characteristics were investigated with magnetic probes in a theta pinch operating with oscillatory current waveform and hydrogen gas at pressure between 45 and 150 mtorr. Current-sheath implosion was evident after the third half cycle until sixth half cycle when the external current has practically decayed. Each cycle starts with a trapped reversed magnetic field residual from the previous half cycle. Probe-signal fluctuations due to radial hydromagnetic oscillations were also observed. A modified snowplow model including an initial bias field and a flux-loss term gives a reasonable description of the experimental results for plasma radial dynamic and internal trapped field. Typical equilibrium-density profiles are of a hollow type with maximum density around one-third of the discharge-tube radius. Estimations from these profiles show small variation of temperature and density among half cycles in discharges at low pressure. At high-pressure regime, the temperature strongly drops in subsequent half cycles, while the density increases.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2009.2031868</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2009-11, Vol.37 (11), p.2186-2190
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_miscellaneous_36345896
source IEEE Electronic Library (IEL) Journals
subjects Density
Electric and magnetic measurements
Electric discharges
Exact sciences and technology
Fluctuations
Gases
Hydrogen
Implosions
Low pressure
Magnetic confinement
Magnetic fields
Magnetic-field measurement
Magnetism
Magnetohydrodynamics
Mathematical models
modeling
Oscillations
Oscillators
Other gas discharges
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma
Plasma confinement
Plasma diagnostic techniques and instrumentation
Plasma dynamics
plasma generation
plasma pinch
Plasma production and heating
Plasma properties
Plasma sources
Plasma temperature
Plasma waves
Probes
Waveforms
title Radial Plasma Dynamic in Sequential Pinches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radial%20Plasma%20Dynamic%20in%20Sequential%20Pinches&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Kayama,%20M.E.&rft.date=2009-11-01&rft.volume=37&rft.issue=11&rft.spage=2186&rft.epage=2190&rft.pages=2186-2190&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2009.2031868&rft_dat=%3Cproquest_ieee_%3E1900724961%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-dd354eda0e8d157d901d43a03e4791f640f01cdaa1a2d48213da460a22bdc7ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195178243&rft_id=info:pmid/&rft_ieee_id=5291759&rfr_iscdi=true