Loading…
Self-addressable memory-based FSM: a scalable intrusion detection engine
One way to detect and thwart a network attack is to compare each incoming packet with predefined patterns, also called an attack pattern database, and raise an alert upon detecting a match. This article presents a novel pattern-matching engine that exploits a memory-based, programmable state machine...
Saved in:
Published in: | IEEE network 2009-01, Vol.23 (1), p.14-21 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One way to detect and thwart a network attack is to compare each incoming packet with predefined patterns, also called an attack pattern database, and raise an alert upon detecting a match. This article presents a novel pattern-matching engine that exploits a memory-based, programmable state machine to achieve deterministic processing rates that are independent of packet and pattern characteristics. Our engine is a self-addressable memory-based finite state machine (SAMFSM), whose current state coding exhibits all its possible next states. Moreover, it is fully reconfigurable in that new attack patterns can be updated easily. A methodology was developed to program the memory and logic. Specifically, we merge "non-equivalent" states by introducing "super characters" on their inputs to further enhance memory efficiency without adding labels. SAM-FSM is one of the most storage-efficient machines and reduces the memory requirement by 60 times. Experimental results are presented to demonstrate the validity of SAM-FSM. |
---|---|
ISSN: | 0890-8044 1558-156X |
DOI: | 10.1109/MNET.2009.4804319 |