Loading…
Finding nonoscillatory solutions to difference schemes for the advection equation
The advection equation is solved using a weighted adaptive scheme that combines a monotone scheme with the central-difference approximation of the first spatial derivative. The determination of antidiffusion fluxes is treated as an optimization problem. The solvability of the optimization problem is...
Saved in:
Published in: | Computational mathematics and mathematical physics 2008-09, Vol.48 (9), p.1646-1657 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The advection equation is solved using a weighted adaptive scheme that combines a monotone scheme with the central-difference approximation of the first spatial derivative. The determination of antidiffusion fluxes is treated as an optimization problem. The solvability of the optimization problem is analyzed, and the differential properties of the cost functional are examined. It is shown that the determination of antidiffusion fluxes is reduced to a linear programming problem in the case of an explicit scheme and to a nonlinear programming problem or a sequence of linear programming problems in the case of an implicit scheme. A simplified monotonization algorithm is proposed. Numerical results are presented. |
---|---|
ISSN: | 0965-5425 1555-6662 |
DOI: | 10.1134/S0965542508090133 |