Loading…

Finding nonoscillatory solutions to difference schemes for the advection equation

The advection equation is solved using a weighted adaptive scheme that combines a monotone scheme with the central-difference approximation of the first spatial derivative. The determination of antidiffusion fluxes is treated as an optimization problem. The solvability of the optimization problem is...

Full description

Saved in:
Bibliographic Details
Published in:Computational mathematics and mathematical physics 2008-09, Vol.48 (9), p.1646-1657
Main Author: Kivva, S. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The advection equation is solved using a weighted adaptive scheme that combines a monotone scheme with the central-difference approximation of the first spatial derivative. The determination of antidiffusion fluxes is treated as an optimization problem. The solvability of the optimization problem is analyzed, and the differential properties of the cost functional are examined. It is shown that the determination of antidiffusion fluxes is reduced to a linear programming problem in the case of an explicit scheme and to a nonlinear programming problem or a sequence of linear programming problems in the case of an implicit scheme. A simplified monotonization algorithm is proposed. Numerical results are presented.
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542508090133