Loading…

Shock focusing in a planar convergent geometry: experiment and simulation

The behaviour of an initially planar shock wave propagating into a linearly convergent wedge is investigated experimentally and numerically. In the experiment, a 25° internal wedge is mounted asymmetrically in a pressure-driven shock tube. Shock waves with incident Mach numbers in the ranges of 1.4–...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2009-12, Vol.641, p.297-333
Main Authors: BOND, C., HILL, D. J., MEIRON, D. I., DIMOTAKIS, P. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-4e2890bb13db109a5dda9a0204d58642a4b41dd34fe46dcb877d51127669c6183
cites cdi_FETCH-LOGICAL-c458t-4e2890bb13db109a5dda9a0204d58642a4b41dd34fe46dcb877d51127669c6183
container_end_page 333
container_issue
container_start_page 297
container_title Journal of fluid mechanics
container_volume 641
creator BOND, C.
HILL, D. J.
MEIRON, D. I.
DIMOTAKIS, P. E.
description The behaviour of an initially planar shock wave propagating into a linearly convergent wedge is investigated experimentally and numerically. In the experiment, a 25° internal wedge is mounted asymmetrically in a pressure-driven shock tube. Shock waves with incident Mach numbers in the ranges of 1.4–1.6 and 2.4–2.6 are generated in nitrogen and carbon dioxide. During each run, the full pressure history is recorded at fourteen locations along the wedge faces and schlieren images are produced. Numerical simulations performed based on the compressible Euler equations are validated against the experiment. The simulations are then used as an additional tool in the investigation. The linearly convergent geometry strengthens the incoming shock repeatedly, as waves reflected from the wedge faces cross the interior of the wedge. This investigation shows that aspects of this structure persist through multiple reflections and influence the nature of the shock-wave focusing. The shock focusing resulting from the distributed reflected waves of the Mach 1.5 case is distinctly different from the stepwise focusing at the higher incoming shock Mach number. Further experiments using CO2 instead of N2 elucidate some relevant real-gas effects and suggest that the presence or absence of a weak leading shock on the distributed reflections is not a controlling factor for focusing.
doi_str_mv 10.1017/S0022112009991492
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36425867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112009991492</cupid><sourcerecordid>36425867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-4e2890bb13db109a5dda9a0204d58642a4b41dd34fe46dcb877d51127669c6183</originalsourceid><addsrcrecordid>eNp1kM1KxDAURoMoOP48gLsi6K6apGnSuBNxRkERcdy4CWmSjtE2GZNW9O1NmUFBcRXId-7HuReAAwRPEETs9AFCjBHCEHLOEeF4A0wQoTxnlJSbYDLG-Zhvg50YXyBEBeRsAq4fnr16zRqvhmjdIrMuk9mylU6GTHn3bsLCuD5bGN-ZPnyeZeZjaYLtxk_pdBZtN7Syt97tga1GttHsr99d8Di9nF9c5Td3s-uL85tckbLqc2JwxWFdo0LXCHJZai25hBgSXVaUYElqgrQuSGMI1aquGNNlEmeUckVRVeyC41XvMvi3wcRedDYq0yZn44coilSSmlgCD3-BL34ILrkJjGDFSsrKBKEVpIKPMZhGLNN2MnwKBMV4WfHnsmnmaF0so5JtE6RTNn4PYoxpVVRjd77ibOzNx3cuw6tIeqwUdHYv-PzqaTqb3wqY-GLtIrs6WL0wP8b_23wBnlGVdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210875675</pqid></control><display><type>article</type><title>Shock focusing in a planar convergent geometry: experiment and simulation</title><source>Cambridge University Press</source><creator>BOND, C. ; HILL, D. J. ; MEIRON, D. I. ; DIMOTAKIS, P. E.</creator><creatorcontrib>BOND, C. ; HILL, D. J. ; MEIRON, D. I. ; DIMOTAKIS, P. E.</creatorcontrib><description>The behaviour of an initially planar shock wave propagating into a linearly convergent wedge is investigated experimentally and numerically. In the experiment, a 25° internal wedge is mounted asymmetrically in a pressure-driven shock tube. Shock waves with incident Mach numbers in the ranges of 1.4–1.6 and 2.4–2.6 are generated in nitrogen and carbon dioxide. During each run, the full pressure history is recorded at fourteen locations along the wedge faces and schlieren images are produced. Numerical simulations performed based on the compressible Euler equations are validated against the experiment. The simulations are then used as an additional tool in the investigation. The linearly convergent geometry strengthens the incoming shock repeatedly, as waves reflected from the wedge faces cross the interior of the wedge. This investigation shows that aspects of this structure persist through multiple reflections and influence the nature of the shock-wave focusing. The shock focusing resulting from the distributed reflected waves of the Mach 1.5 case is distinctly different from the stepwise focusing at the higher incoming shock Mach number. Further experiments using CO2 instead of N2 elucidate some relevant real-gas effects and suggest that the presence or absence of a weak leading shock on the distributed reflections is not a controlling factor for focusing.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112009991492</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Carbon dioxide ; Compressible flows; shock and detonation phenomena ; Eulers equations ; Exact sciences and technology ; flow structure interactions ; Fluid dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; gas dynamics ; Gas flow ; Physics ; Shock waves ; Shock-wave interactions and shock effects ; Simulation</subject><ispartof>Journal of fluid mechanics, 2009-12, Vol.641, p.297-333</ispartof><rights>Copyright © Cambridge University Press 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-4e2890bb13db109a5dda9a0204d58642a4b41dd34fe46dcb877d51127669c6183</citedby><cites>FETCH-LOGICAL-c458t-4e2890bb13db109a5dda9a0204d58642a4b41dd34fe46dcb877d51127669c6183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112009991492/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,72731</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22268385$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BOND, C.</creatorcontrib><creatorcontrib>HILL, D. J.</creatorcontrib><creatorcontrib>MEIRON, D. I.</creatorcontrib><creatorcontrib>DIMOTAKIS, P. E.</creatorcontrib><title>Shock focusing in a planar convergent geometry: experiment and simulation</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The behaviour of an initially planar shock wave propagating into a linearly convergent wedge is investigated experimentally and numerically. In the experiment, a 25° internal wedge is mounted asymmetrically in a pressure-driven shock tube. Shock waves with incident Mach numbers in the ranges of 1.4–1.6 and 2.4–2.6 are generated in nitrogen and carbon dioxide. During each run, the full pressure history is recorded at fourteen locations along the wedge faces and schlieren images are produced. Numerical simulations performed based on the compressible Euler equations are validated against the experiment. The simulations are then used as an additional tool in the investigation. The linearly convergent geometry strengthens the incoming shock repeatedly, as waves reflected from the wedge faces cross the interior of the wedge. This investigation shows that aspects of this structure persist through multiple reflections and influence the nature of the shock-wave focusing. The shock focusing resulting from the distributed reflected waves of the Mach 1.5 case is distinctly different from the stepwise focusing at the higher incoming shock Mach number. Further experiments using CO2 instead of N2 elucidate some relevant real-gas effects and suggest that the presence or absence of a weak leading shock on the distributed reflections is not a controlling factor for focusing.</description><subject>Carbon dioxide</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Eulers equations</subject><subject>Exact sciences and technology</subject><subject>flow structure interactions</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>gas dynamics</subject><subject>Gas flow</subject><subject>Physics</subject><subject>Shock waves</subject><subject>Shock-wave interactions and shock effects</subject><subject>Simulation</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAURoMoOP48gLsi6K6apGnSuBNxRkERcdy4CWmSjtE2GZNW9O1NmUFBcRXId-7HuReAAwRPEETs9AFCjBHCEHLOEeF4A0wQoTxnlJSbYDLG-Zhvg50YXyBEBeRsAq4fnr16zRqvhmjdIrMuk9mylU6GTHn3bsLCuD5bGN-ZPnyeZeZjaYLtxk_pdBZtN7Syt97tga1GttHsr99d8Di9nF9c5Td3s-uL85tckbLqc2JwxWFdo0LXCHJZai25hBgSXVaUYElqgrQuSGMI1aquGNNlEmeUckVRVeyC41XvMvi3wcRedDYq0yZn44coilSSmlgCD3-BL34ILrkJjGDFSsrKBKEVpIKPMZhGLNN2MnwKBMV4WfHnsmnmaF0so5JtE6RTNn4PYoxpVVRjd77ibOzNx3cuw6tIeqwUdHYv-PzqaTqb3wqY-GLtIrs6WL0wP8b_23wBnlGVdA</recordid><startdate>20091225</startdate><enddate>20091225</enddate><creator>BOND, C.</creator><creator>HILL, D. J.</creator><creator>MEIRON, D. I.</creator><creator>DIMOTAKIS, P. E.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20091225</creationdate><title>Shock focusing in a planar convergent geometry: experiment and simulation</title><author>BOND, C. ; HILL, D. J. ; MEIRON, D. I. ; DIMOTAKIS, P. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-4e2890bb13db109a5dda9a0204d58642a4b41dd34fe46dcb877d51127669c6183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Carbon dioxide</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Eulers equations</topic><topic>Exact sciences and technology</topic><topic>flow structure interactions</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>gas dynamics</topic><topic>Gas flow</topic><topic>Physics</topic><topic>Shock waves</topic><topic>Shock-wave interactions and shock effects</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOND, C.</creatorcontrib><creatorcontrib>HILL, D. J.</creatorcontrib><creatorcontrib>MEIRON, D. I.</creatorcontrib><creatorcontrib>DIMOTAKIS, P. E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOND, C.</au><au>HILL, D. J.</au><au>MEIRON, D. I.</au><au>DIMOTAKIS, P. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock focusing in a planar convergent geometry: experiment and simulation</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2009-12-25</date><risdate>2009</risdate><volume>641</volume><spage>297</spage><epage>333</epage><pages>297-333</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>The behaviour of an initially planar shock wave propagating into a linearly convergent wedge is investigated experimentally and numerically. In the experiment, a 25° internal wedge is mounted asymmetrically in a pressure-driven shock tube. Shock waves with incident Mach numbers in the ranges of 1.4–1.6 and 2.4–2.6 are generated in nitrogen and carbon dioxide. During each run, the full pressure history is recorded at fourteen locations along the wedge faces and schlieren images are produced. Numerical simulations performed based on the compressible Euler equations are validated against the experiment. The simulations are then used as an additional tool in the investigation. The linearly convergent geometry strengthens the incoming shock repeatedly, as waves reflected from the wedge faces cross the interior of the wedge. This investigation shows that aspects of this structure persist through multiple reflections and influence the nature of the shock-wave focusing. The shock focusing resulting from the distributed reflected waves of the Mach 1.5 case is distinctly different from the stepwise focusing at the higher incoming shock Mach number. Further experiments using CO2 instead of N2 elucidate some relevant real-gas effects and suggest that the presence or absence of a weak leading shock on the distributed reflections is not a controlling factor for focusing.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112009991492</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2009-12, Vol.641, p.297-333
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_36425867
source Cambridge University Press
subjects Carbon dioxide
Compressible flows
shock and detonation phenomena
Eulers equations
Exact sciences and technology
flow structure interactions
Fluid dynamics
Fluid mechanics
Fundamental areas of phenomenology (including applications)
gas dynamics
Gas flow
Physics
Shock waves
Shock-wave interactions and shock effects
Simulation
title Shock focusing in a planar convergent geometry: experiment and simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock%20focusing%20in%20a%20planar%20convergent%20geometry:%20experiment%20and%20simulation&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=BOND,%20C.&rft.date=2009-12-25&rft.volume=641&rft.spage=297&rft.epage=333&rft.pages=297-333&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112009991492&rft_dat=%3Cproquest_cross%3E36425867%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-4e2890bb13db109a5dda9a0204d58642a4b41dd34fe46dcb877d51127669c6183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=210875675&rft_id=info:pmid/&rft_cupid=10_1017_S0022112009991492&rfr_iscdi=true