Loading…
Shock focusing in a planar convergent geometry: experiment and simulation
The behaviour of an initially planar shock wave propagating into a linearly convergent wedge is investigated experimentally and numerically. In the experiment, a 25° internal wedge is mounted asymmetrically in a pressure-driven shock tube. Shock waves with incident Mach numbers in the ranges of 1.4–...
Saved in:
Published in: | Journal of fluid mechanics 2009-12, Vol.641, p.297-333 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-4e2890bb13db109a5dda9a0204d58642a4b41dd34fe46dcb877d51127669c6183 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-4e2890bb13db109a5dda9a0204d58642a4b41dd34fe46dcb877d51127669c6183 |
container_end_page | 333 |
container_issue | |
container_start_page | 297 |
container_title | Journal of fluid mechanics |
container_volume | 641 |
creator | BOND, C. HILL, D. J. MEIRON, D. I. DIMOTAKIS, P. E. |
description | The behaviour of an initially planar shock wave propagating into a linearly convergent wedge is investigated experimentally and numerically. In the experiment, a 25° internal wedge is mounted asymmetrically in a pressure-driven shock tube. Shock waves with incident Mach numbers in the ranges of 1.4–1.6 and 2.4–2.6 are generated in nitrogen and carbon dioxide. During each run, the full pressure history is recorded at fourteen locations along the wedge faces and schlieren images are produced. Numerical simulations performed based on the compressible Euler equations are validated against the experiment. The simulations are then used as an additional tool in the investigation. The linearly convergent geometry strengthens the incoming shock repeatedly, as waves reflected from the wedge faces cross the interior of the wedge. This investigation shows that aspects of this structure persist through multiple reflections and influence the nature of the shock-wave focusing. The shock focusing resulting from the distributed reflected waves of the Mach 1.5 case is distinctly different from the stepwise focusing at the higher incoming shock Mach number. Further experiments using CO2 instead of N2 elucidate some relevant real-gas effects and suggest that the presence or absence of a weak leading shock on the distributed reflections is not a controlling factor for focusing. |
doi_str_mv | 10.1017/S0022112009991492 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36425867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112009991492</cupid><sourcerecordid>36425867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-4e2890bb13db109a5dda9a0204d58642a4b41dd34fe46dcb877d51127669c6183</originalsourceid><addsrcrecordid>eNp1kM1KxDAURoMoOP48gLsi6K6apGnSuBNxRkERcdy4CWmSjtE2GZNW9O1NmUFBcRXId-7HuReAAwRPEETs9AFCjBHCEHLOEeF4A0wQoTxnlJSbYDLG-Zhvg50YXyBEBeRsAq4fnr16zRqvhmjdIrMuk9mylU6GTHn3bsLCuD5bGN-ZPnyeZeZjaYLtxk_pdBZtN7Syt97tga1GttHsr99d8Di9nF9c5Td3s-uL85tckbLqc2JwxWFdo0LXCHJZai25hBgSXVaUYElqgrQuSGMI1aquGNNlEmeUckVRVeyC41XvMvi3wcRedDYq0yZn44coilSSmlgCD3-BL34ILrkJjGDFSsrKBKEVpIKPMZhGLNN2MnwKBMV4WfHnsmnmaF0so5JtE6RTNn4PYoxpVVRjd77ibOzNx3cuw6tIeqwUdHYv-PzqaTqb3wqY-GLtIrs6WL0wP8b_23wBnlGVdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210875675</pqid></control><display><type>article</type><title>Shock focusing in a planar convergent geometry: experiment and simulation</title><source>Cambridge University Press</source><creator>BOND, C. ; HILL, D. J. ; MEIRON, D. I. ; DIMOTAKIS, P. E.</creator><creatorcontrib>BOND, C. ; HILL, D. J. ; MEIRON, D. I. ; DIMOTAKIS, P. E.</creatorcontrib><description>The behaviour of an initially planar shock wave propagating into a linearly convergent wedge is investigated experimentally and numerically. In the experiment, a 25° internal wedge is mounted asymmetrically in a pressure-driven shock tube. Shock waves with incident Mach numbers in the ranges of 1.4–1.6 and 2.4–2.6 are generated in nitrogen and carbon dioxide. During each run, the full pressure history is recorded at fourteen locations along the wedge faces and schlieren images are produced. Numerical simulations performed based on the compressible Euler equations are validated against the experiment. The simulations are then used as an additional tool in the investigation. The linearly convergent geometry strengthens the incoming shock repeatedly, as waves reflected from the wedge faces cross the interior of the wedge. This investigation shows that aspects of this structure persist through multiple reflections and influence the nature of the shock-wave focusing. The shock focusing resulting from the distributed reflected waves of the Mach 1.5 case is distinctly different from the stepwise focusing at the higher incoming shock Mach number. Further experiments using CO2 instead of N2 elucidate some relevant real-gas effects and suggest that the presence or absence of a weak leading shock on the distributed reflections is not a controlling factor for focusing.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112009991492</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Carbon dioxide ; Compressible flows; shock and detonation phenomena ; Eulers equations ; Exact sciences and technology ; flow structure interactions ; Fluid dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; gas dynamics ; Gas flow ; Physics ; Shock waves ; Shock-wave interactions and shock effects ; Simulation</subject><ispartof>Journal of fluid mechanics, 2009-12, Vol.641, p.297-333</ispartof><rights>Copyright © Cambridge University Press 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-4e2890bb13db109a5dda9a0204d58642a4b41dd34fe46dcb877d51127669c6183</citedby><cites>FETCH-LOGICAL-c458t-4e2890bb13db109a5dda9a0204d58642a4b41dd34fe46dcb877d51127669c6183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112009991492/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,72731</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22268385$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BOND, C.</creatorcontrib><creatorcontrib>HILL, D. J.</creatorcontrib><creatorcontrib>MEIRON, D. I.</creatorcontrib><creatorcontrib>DIMOTAKIS, P. E.</creatorcontrib><title>Shock focusing in a planar convergent geometry: experiment and simulation</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The behaviour of an initially planar shock wave propagating into a linearly convergent wedge is investigated experimentally and numerically. In the experiment, a 25° internal wedge is mounted asymmetrically in a pressure-driven shock tube. Shock waves with incident Mach numbers in the ranges of 1.4–1.6 and 2.4–2.6 are generated in nitrogen and carbon dioxide. During each run, the full pressure history is recorded at fourteen locations along the wedge faces and schlieren images are produced. Numerical simulations performed based on the compressible Euler equations are validated against the experiment. The simulations are then used as an additional tool in the investigation. The linearly convergent geometry strengthens the incoming shock repeatedly, as waves reflected from the wedge faces cross the interior of the wedge. This investigation shows that aspects of this structure persist through multiple reflections and influence the nature of the shock-wave focusing. The shock focusing resulting from the distributed reflected waves of the Mach 1.5 case is distinctly different from the stepwise focusing at the higher incoming shock Mach number. Further experiments using CO2 instead of N2 elucidate some relevant real-gas effects and suggest that the presence or absence of a weak leading shock on the distributed reflections is not a controlling factor for focusing.</description><subject>Carbon dioxide</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Eulers equations</subject><subject>Exact sciences and technology</subject><subject>flow structure interactions</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>gas dynamics</subject><subject>Gas flow</subject><subject>Physics</subject><subject>Shock waves</subject><subject>Shock-wave interactions and shock effects</subject><subject>Simulation</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAURoMoOP48gLsi6K6apGnSuBNxRkERcdy4CWmSjtE2GZNW9O1NmUFBcRXId-7HuReAAwRPEETs9AFCjBHCEHLOEeF4A0wQoTxnlJSbYDLG-Zhvg50YXyBEBeRsAq4fnr16zRqvhmjdIrMuk9mylU6GTHn3bsLCuD5bGN-ZPnyeZeZjaYLtxk_pdBZtN7Syt97tga1GttHsr99d8Di9nF9c5Td3s-uL85tckbLqc2JwxWFdo0LXCHJZai25hBgSXVaUYElqgrQuSGMI1aquGNNlEmeUckVRVeyC41XvMvi3wcRedDYq0yZn44coilSSmlgCD3-BL34ILrkJjGDFSsrKBKEVpIKPMZhGLNN2MnwKBMV4WfHnsmnmaF0so5JtE6RTNn4PYoxpVVRjd77ibOzNx3cuw6tIeqwUdHYv-PzqaTqb3wqY-GLtIrs6WL0wP8b_23wBnlGVdA</recordid><startdate>20091225</startdate><enddate>20091225</enddate><creator>BOND, C.</creator><creator>HILL, D. J.</creator><creator>MEIRON, D. I.</creator><creator>DIMOTAKIS, P. E.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20091225</creationdate><title>Shock focusing in a planar convergent geometry: experiment and simulation</title><author>BOND, C. ; HILL, D. J. ; MEIRON, D. I. ; DIMOTAKIS, P. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-4e2890bb13db109a5dda9a0204d58642a4b41dd34fe46dcb877d51127669c6183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Carbon dioxide</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Eulers equations</topic><topic>Exact sciences and technology</topic><topic>flow structure interactions</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>gas dynamics</topic><topic>Gas flow</topic><topic>Physics</topic><topic>Shock waves</topic><topic>Shock-wave interactions and shock effects</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOND, C.</creatorcontrib><creatorcontrib>HILL, D. J.</creatorcontrib><creatorcontrib>MEIRON, D. I.</creatorcontrib><creatorcontrib>DIMOTAKIS, P. E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOND, C.</au><au>HILL, D. J.</au><au>MEIRON, D. I.</au><au>DIMOTAKIS, P. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock focusing in a planar convergent geometry: experiment and simulation</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2009-12-25</date><risdate>2009</risdate><volume>641</volume><spage>297</spage><epage>333</epage><pages>297-333</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>The behaviour of an initially planar shock wave propagating into a linearly convergent wedge is investigated experimentally and numerically. In the experiment, a 25° internal wedge is mounted asymmetrically in a pressure-driven shock tube. Shock waves with incident Mach numbers in the ranges of 1.4–1.6 and 2.4–2.6 are generated in nitrogen and carbon dioxide. During each run, the full pressure history is recorded at fourteen locations along the wedge faces and schlieren images are produced. Numerical simulations performed based on the compressible Euler equations are validated against the experiment. The simulations are then used as an additional tool in the investigation. The linearly convergent geometry strengthens the incoming shock repeatedly, as waves reflected from the wedge faces cross the interior of the wedge. This investigation shows that aspects of this structure persist through multiple reflections and influence the nature of the shock-wave focusing. The shock focusing resulting from the distributed reflected waves of the Mach 1.5 case is distinctly different from the stepwise focusing at the higher incoming shock Mach number. Further experiments using CO2 instead of N2 elucidate some relevant real-gas effects and suggest that the presence or absence of a weak leading shock on the distributed reflections is not a controlling factor for focusing.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112009991492</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2009-12, Vol.641, p.297-333 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_36425867 |
source | Cambridge University Press |
subjects | Carbon dioxide Compressible flows shock and detonation phenomena Eulers equations Exact sciences and technology flow structure interactions Fluid dynamics Fluid mechanics Fundamental areas of phenomenology (including applications) gas dynamics Gas flow Physics Shock waves Shock-wave interactions and shock effects Simulation |
title | Shock focusing in a planar convergent geometry: experiment and simulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock%20focusing%20in%20a%20planar%20convergent%20geometry:%20experiment%20and%20simulation&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=BOND,%20C.&rft.date=2009-12-25&rft.volume=641&rft.spage=297&rft.epage=333&rft.pages=297-333&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112009991492&rft_dat=%3Cproquest_cross%3E36425867%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-4e2890bb13db109a5dda9a0204d58642a4b41dd34fe46dcb877d51127669c6183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=210875675&rft_id=info:pmid/&rft_cupid=10_1017_S0022112009991492&rfr_iscdi=true |