Loading…
An identification problem for first-order degenerate differential equations
We study a rst-order identication problem in a Banach space. We discuss the nondegenerate and mainly the degenerate case. As a rst step, suitable hypotheses on the involved closed linear operators are made in order to obtain unique solvability after reduction to a nondegenerate case; the general cas...
Saved in:
Published in: | Journal of optimization theory and applications 2006-07, Vol.130 (1), p.41-60 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study a rst-order identication problem in a Banach space. We discuss the nondegenerate and mainly the degenerate case. As a rst step, suitable hypotheses on the involved closed linear operators are made in order to obtain unique solvability after reduction to a nondegenerate case; the general case is then handled with the help of new results on convolutions. Some applications to partial differential equations motivate this abstract approach. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-006-9083-y |