Loading…

Indian land use in the Raposa–Serra do Sol Reserve, Roraima, Amazonia, Brazil: Physical and chemical attributes of a soil catena developed from mafic rocks under shifting cultivation

Native Indians (Macuxi, Ingarikó and Uapishana) in the Raposa–Serra do Sol Indian Reserve have been cultivating forest soils since the early XIX century, especially those derived from dolerite sills, scattered within the quartzitic dominated landscape. Representative soils developed from mafic rocks...

Full description

Saved in:
Bibliographic Details
Published in:Catena (Giessen) 2010-02, Vol.80 (2), p.95-105
Main Authors: Melo, Valdinar F., Schaefer, Carlos Ernesto G.R., Uchôa, Sandra Cátia P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Native Indians (Macuxi, Ingarikó and Uapishana) in the Raposa–Serra do Sol Indian Reserve have been cultivating forest soils since the early XIX century, especially those derived from dolerite sills, scattered within the quartzitic dominated landscape. Representative soils developed from mafic rocks under Indian shifting cultivation in northeastern Roraima, were submitted to physical, chemical and mineralogical analyses to characterize their pedogenetic characteristics and infer on their status under native Indian shifting cultivation. The soil profiles were classified as: Orthic Ebanic Chernosol (USDA Mollisol), vertic Orthic Ebanic Chernosol (USDA Mollisol), Eutrophic Haplic Cambisol (USDA mollic Inceptisol) and Eutrophic Red Nitosol (USDA Red Alfisol), which occupy, respectively, lower slopes and less dissected terrains (Mollisols) and steeper slopes (Alfisols). The first two are eutrophic, and not typical of the Amazon region. Their mineralogies range from kaolinite/goethite rich upland, deeply weathered Nitosol, to 2:1 clay rich downslope Chernosols. The latter has primary minerals in the silt fraction and high CEC resulting in high fertility. The Nitosols reveal a process of severe topsoil loss, due to widespread sheet erosion from deforestation and shifting cultivation. Chemical analyses showed varied soil fertility, ranging from high levels in the Chernosols to a low level in the non-cultivated Nitosol. Phosphorus levels are limited in all soils, despite the high fertility. The Chernosols located in lowland, flat areas close to the valley floor are more suitable environments for the slash-and-burn native farming system. In the Chernosols and Cambisols, the clay activity below the value limit for this class indicates a current natural process of increasing leaching. The more weathered and eroded Nitosol showed low Fe-oxalate and Si-oxalate levels. Micronutrients such as total zinc and copper, decreased with depth and weathering. The Nitosols showed the highest phosphate adsorption levels (1.574 mg g − 1 of soil) which can be attributed to its clayey texture. Chernosols showed overall lower P adsorption values, increasing with depth. All soils under native Indian cultivation display signs of physical and chemical degradation due to shortened fallow under intense land use pressure in the Raposa–Serra do Sol Reserve.
ISSN:0341-8162
1872-6887
DOI:10.1016/j.catena.2009.09.004