Loading…
Robust estimation for linear regression with asymmetric errors
The authors propose a new class of robust estimators for the parameters of a regression model in which the distribution of the error terms belongs to a class of exponential families including the log-gamma distribution. These estimates, which are a natural extension of the MM-estimates for ordinary...
Saved in:
Published in: | Canadian journal of statistics 2005-12, Vol.33 (4), p.511-528 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4074-7e08289942b50642ea62224b08734154292f37f080d1912b5e8ab471ceaed1ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4074-7e08289942b50642ea62224b08734154292f37f080d1912b5e8ab471ceaed1ef3 |
container_end_page | 528 |
container_issue | 4 |
container_start_page | 511 |
container_title | Canadian journal of statistics |
container_volume | 33 |
creator | Bianco, Ana M. Ben, Marta Garcia Yohai, Víctor J. |
description | The authors propose a new class of robust estimators for the parameters of a regression model in which the distribution of the error terms belongs to a class of exponential families including the log-gamma distribution. These estimates, which are a natural extension of the MM-estimates for ordinary regression, may combine simultaneously high asymptotic efficiency and a high breakdown point. The authors prove the consistency and derive the asymptotic normal distribution of these estimates. A Monte Carlo study allows them to assess the efficiency and robustness of these estimates for finite samples. /// Les auteurs proposent une nouvelle classe d'estimateurs robustes pour les paramètres d'un modèle de régression dont la loi des termes d'erreur appartient à une classe de familles exponentielles incluant la distribution log-gamma. Ces estimateurs, qui généralisent de façon naturelle les MM-estimateurs de la régression ordinaire, peuvent avoir à la fois une bonne efficacité asymptotique et un point de rupture élevé. Les auteurs en démontrent la convergence et la normalité asymptotique. Une étude de Monte-Carlo leur permet d'évaluer l'efficacité et la robustesse des estimateurs dans des échantillons de taille finie. |
doi_str_mv | 10.1002/cjs.5550330404 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36516315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25046199</jstor_id><sourcerecordid>25046199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4074-7e08289942b50642ea62224b08734154292f37f080d1912b5e8ab471ceaed1ef3</originalsourceid><addsrcrecordid>eNqFkE1v00AQhlcVSA2Ba2-VLA7cHGb2w-u9VIKIpqCIqhTU3lZrZ9w6ONmya6vNv-9GRkFw4TTSvs8zmn0ZO0GYIQB_X6_jTCkFQoAEecQmqKHMjVS3L9gEBJpcaS6P2asY1wBCIfIJO_vmqyH2GcW-3bi-9dus8SHr2i25kAW6CxTj_vWx7e8zF3ebDfWhrTMKwYf4mr1sXBfpze85ZT_OP32fX-TLy8Xn-YdlXkvQMtcEJS-NkbxSUEhOruCcywpKLSQqyQ1vhG6ghBUaTBCVrpIaa3K0QmrElL0b9z4E_2tIx9pNG2vqOrclP0QrCoWFQJXAt_-Aaz-EbbrN8lSSQqGKBM1GqA4-xkCNfQjp92FnEey-S5u6tH-6TIIZhce2o91_aDv_cv2Xezq669j7cHC5AlmgMSnPx7yNPT0dchd-2kILrezN14Ut4aNa4pWwC_EMXRSO_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200251356</pqid></control><display><type>article</type><title>Robust estimation for linear regression with asymmetric errors</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley</source><source>JSTOR Archival Journals</source><creator>Bianco, Ana M. ; Ben, Marta Garcia ; Yohai, Víctor J.</creator><creatorcontrib>Bianco, Ana M. ; Ben, Marta Garcia ; Yohai, Víctor J.</creatorcontrib><description>The authors propose a new class of robust estimators for the parameters of a regression model in which the distribution of the error terms belongs to a class of exponential families including the log-gamma distribution. These estimates, which are a natural extension of the MM-estimates for ordinary regression, may combine simultaneously high asymptotic efficiency and a high breakdown point. The authors prove the consistency and derive the asymptotic normal distribution of these estimates. A Monte Carlo study allows them to assess the efficiency and robustness of these estimates for finite samples. /// Les auteurs proposent une nouvelle classe d'estimateurs robustes pour les paramètres d'un modèle de régression dont la loi des termes d'erreur appartient à une classe de familles exponentielles incluant la distribution log-gamma. Ces estimateurs, qui généralisent de façon naturelle les MM-estimateurs de la régression ordinaire, peuvent avoir à la fois une bonne efficacité asymptotique et un point de rupture élevé. Les auteurs en démontrent la convergence et la normalité asymptotique. Une étude de Monte-Carlo leur permet d'évaluer l'efficacité et la robustesse des estimateurs dans des échantillons de taille finie.</description><identifier>ISSN: 0319-5724</identifier><identifier>EISSN: 1708-945X</identifier><identifier>DOI: 10.1002/cjs.5550330404</identifier><language>eng</language><publisher>Hoboken: Wiley-Blackwell</publisher><subject>Consistent estimators ; Distribution ; Error ; Errors ; Estimation ; Estimators ; Generalized linear model ; Linear regression ; Log-gamma regression ; M-estimates ; Mathematical models ; Maximum likelihood estimation ; Maximum likelihood estimators ; Monte Carlo simulation ; Outliers ; Parameter estimation ; Point estimators ; Preliminary estimates ; Regression analysis ; robust estimates ; Statistical methods ; Studies</subject><ispartof>Canadian journal of statistics, 2005-12, Vol.33 (4), p.511-528</ispartof><rights>Copyright 2005 Statistical Society of Canada/Société statistique du Canada</rights><rights>Copyright © 2005 Statistical Society of Canada</rights><rights>Copyright Statistical Society of Canada Dec 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4074-7e08289942b50642ea62224b08734154292f37f080d1912b5e8ab471ceaed1ef3</citedby><cites>FETCH-LOGICAL-c4074-7e08289942b50642ea62224b08734154292f37f080d1912b5e8ab471ceaed1ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25046199$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25046199$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,33223,33224,58238,58471</link.rule.ids></links><search><creatorcontrib>Bianco, Ana M.</creatorcontrib><creatorcontrib>Ben, Marta Garcia</creatorcontrib><creatorcontrib>Yohai, Víctor J.</creatorcontrib><title>Robust estimation for linear regression with asymmetric errors</title><title>Canadian journal of statistics</title><addtitle>Can J Statistics</addtitle><description>The authors propose a new class of robust estimators for the parameters of a regression model in which the distribution of the error terms belongs to a class of exponential families including the log-gamma distribution. These estimates, which are a natural extension of the MM-estimates for ordinary regression, may combine simultaneously high asymptotic efficiency and a high breakdown point. The authors prove the consistency and derive the asymptotic normal distribution of these estimates. A Monte Carlo study allows them to assess the efficiency and robustness of these estimates for finite samples. /// Les auteurs proposent une nouvelle classe d'estimateurs robustes pour les paramètres d'un modèle de régression dont la loi des termes d'erreur appartient à une classe de familles exponentielles incluant la distribution log-gamma. Ces estimateurs, qui généralisent de façon naturelle les MM-estimateurs de la régression ordinaire, peuvent avoir à la fois une bonne efficacité asymptotique et un point de rupture élevé. Les auteurs en démontrent la convergence et la normalité asymptotique. Une étude de Monte-Carlo leur permet d'évaluer l'efficacité et la robustesse des estimateurs dans des échantillons de taille finie.</description><subject>Consistent estimators</subject><subject>Distribution</subject><subject>Error</subject><subject>Errors</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Generalized linear model</subject><subject>Linear regression</subject><subject>Log-gamma regression</subject><subject>M-estimates</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Monte Carlo simulation</subject><subject>Outliers</subject><subject>Parameter estimation</subject><subject>Point estimators</subject><subject>Preliminary estimates</subject><subject>Regression analysis</subject><subject>robust estimates</subject><subject>Statistical methods</subject><subject>Studies</subject><issn>0319-5724</issn><issn>1708-945X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkE1v00AQhlcVSA2Ba2-VLA7cHGb2w-u9VIKIpqCIqhTU3lZrZ9w6ONmya6vNv-9GRkFw4TTSvs8zmn0ZO0GYIQB_X6_jTCkFQoAEecQmqKHMjVS3L9gEBJpcaS6P2asY1wBCIfIJO_vmqyH2GcW-3bi-9dus8SHr2i25kAW6CxTj_vWx7e8zF3ebDfWhrTMKwYf4mr1sXBfpze85ZT_OP32fX-TLy8Xn-YdlXkvQMtcEJS-NkbxSUEhOruCcywpKLSQqyQ1vhG6ghBUaTBCVrpIaa3K0QmrElL0b9z4E_2tIx9pNG2vqOrclP0QrCoWFQJXAt_-Aaz-EbbrN8lSSQqGKBM1GqA4-xkCNfQjp92FnEey-S5u6tH-6TIIZhce2o91_aDv_cv2Xezq669j7cHC5AlmgMSnPx7yNPT0dchd-2kILrezN14Ut4aNa4pWwC_EMXRSO_w</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Bianco, Ana M.</creator><creator>Ben, Marta Garcia</creator><creator>Yohai, Víctor J.</creator><general>Wiley-Blackwell</general><general>Statistical Society of Canada</general><general>Wiley‐Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>H8D</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200512</creationdate><title>Robust estimation for linear regression with asymmetric errors</title><author>Bianco, Ana M. ; Ben, Marta Garcia ; Yohai, Víctor J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4074-7e08289942b50642ea62224b08734154292f37f080d1912b5e8ab471ceaed1ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Consistent estimators</topic><topic>Distribution</topic><topic>Error</topic><topic>Errors</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Generalized linear model</topic><topic>Linear regression</topic><topic>Log-gamma regression</topic><topic>M-estimates</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Monte Carlo simulation</topic><topic>Outliers</topic><topic>Parameter estimation</topic><topic>Point estimators</topic><topic>Preliminary estimates</topic><topic>Regression analysis</topic><topic>robust estimates</topic><topic>Statistical methods</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianco, Ana M.</creatorcontrib><creatorcontrib>Ben, Marta Garcia</creatorcontrib><creatorcontrib>Yohai, Víctor J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Aerospace Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Canadian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianco, Ana M.</au><au>Ben, Marta Garcia</au><au>Yohai, Víctor J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust estimation for linear regression with asymmetric errors</atitle><jtitle>Canadian journal of statistics</jtitle><addtitle>Can J Statistics</addtitle><date>2005-12</date><risdate>2005</risdate><volume>33</volume><issue>4</issue><spage>511</spage><epage>528</epage><pages>511-528</pages><issn>0319-5724</issn><eissn>1708-945X</eissn><abstract>The authors propose a new class of robust estimators for the parameters of a regression model in which the distribution of the error terms belongs to a class of exponential families including the log-gamma distribution. These estimates, which are a natural extension of the MM-estimates for ordinary regression, may combine simultaneously high asymptotic efficiency and a high breakdown point. The authors prove the consistency and derive the asymptotic normal distribution of these estimates. A Monte Carlo study allows them to assess the efficiency and robustness of these estimates for finite samples. /// Les auteurs proposent une nouvelle classe d'estimateurs robustes pour les paramètres d'un modèle de régression dont la loi des termes d'erreur appartient à une classe de familles exponentielles incluant la distribution log-gamma. Ces estimateurs, qui généralisent de façon naturelle les MM-estimateurs de la régression ordinaire, peuvent avoir à la fois une bonne efficacité asymptotique et un point de rupture élevé. Les auteurs en démontrent la convergence et la normalité asymptotique. Une étude de Monte-Carlo leur permet d'évaluer l'efficacité et la robustesse des estimateurs dans des échantillons de taille finie.</abstract><cop>Hoboken</cop><pub>Wiley-Blackwell</pub><doi>10.1002/cjs.5550330404</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0319-5724 |
ispartof | Canadian journal of statistics, 2005-12, Vol.33 (4), p.511-528 |
issn | 0319-5724 1708-945X |
language | eng |
recordid | cdi_proquest_miscellaneous_36516315 |
source | International Bibliography of the Social Sciences (IBSS); Wiley; JSTOR Archival Journals |
subjects | Consistent estimators Distribution Error Errors Estimation Estimators Generalized linear model Linear regression Log-gamma regression M-estimates Mathematical models Maximum likelihood estimation Maximum likelihood estimators Monte Carlo simulation Outliers Parameter estimation Point estimators Preliminary estimates Regression analysis robust estimates Statistical methods Studies |
title | Robust estimation for linear regression with asymmetric errors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20estimation%20for%20linear%20regression%20with%20asymmetric%20errors&rft.jtitle=Canadian%20journal%20of%20statistics&rft.au=Bianco,%20Ana%20M.&rft.date=2005-12&rft.volume=33&rft.issue=4&rft.spage=511&rft.epage=528&rft.pages=511-528&rft.issn=0319-5724&rft.eissn=1708-945X&rft_id=info:doi/10.1002/cjs.5550330404&rft_dat=%3Cjstor_proqu%3E25046199%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4074-7e08289942b50642ea62224b08734154292f37f080d1912b5e8ab471ceaed1ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200251356&rft_id=info:pmid/&rft_jstor_id=25046199&rfr_iscdi=true |