Loading…
On ascending Vickrey auctions for heterogeneous objects
We construct an ascending auction for heterogeneous objects by applying a primal-dual algorithm to a linear program that represents the efficient-allocation problem for this setting. The auction assigns personalized prices to bundles, and asks bidders to report their preferred bundles in each round....
Saved in:
Published in: | Journal of economic theory 2007, Vol.132 (1), p.95-118 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We construct an ascending auction for heterogeneous objects by applying a primal-dual algorithm to a linear program that represents the efficient-allocation problem for this setting. The auction assigns personalized prices to bundles, and asks bidders to report their preferred bundles in each round. A bidder's prices are increased when he belongs to a “minimally undersupplied” set of bidders. This concept generalizes the notion of “overdemanded” sets of objects introduced by Demange, Gale, and Sotomayor for the one-to-one assignment problem. Under a submodularity condition, the auction implements the Vickrey–Clarke–Groves outcome; we show that this type of condition is somewhat necessary to do so. When classifying the ascending-auction literature in terms of their underlying algorithms, our auction fills a gap in that literature. We relate our results to various ascending auctions in the literature. |
---|---|
ISSN: | 0022-0531 1095-7235 |
DOI: | 10.1016/j.jet.2005.07.010 |