Loading…

The quantilogram: With an application to evaluating directional predictability

We propose a new diagnostic tool for time series called the quantilogram. The tool can be used formally and we provide the inference tools to do this under general conditions, and it can also be used as a simple graphical device. We apply our method to measure directional predictability and to test...

Full description

Saved in:
Bibliographic Details
Published in:Journal of econometrics 2007-11, Vol.141 (1), p.250-282
Main Authors: Linton, O., Whang, Yoon-Jae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a new diagnostic tool for time series called the quantilogram. The tool can be used formally and we provide the inference tools to do this under general conditions, and it can also be used as a simple graphical device. We apply our method to measure directional predictability and to test the hypothesis that a given time series has no directional predictability. The test is based on comparing the correlogram of quantile hits to a pointwise confidence interval or on comparing the cumulated squared autocorrelations with the corresponding critical value. We provide the distribution theory needed to conduct inference, propose some model free upper bound critical values, and apply our methods to S&P500 stock index return data. The empirical results suggest some directional predictability in returns. The evidence is strongest in mid range quantiles like 5–10% and for daily data. The evidence for predictability at the median is of comparable strength to the evidence around the mean, and is strongest at the daily frequency.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2007.01.004