Loading…
Modelling stochastic mortality for dependent lives
Stochastic mortality, i.e. modelling death arrival via a jump process with stochastic intensity, is gaining an increasing reputation as a way to represent mortality risk. This paper is a first attempt to model the mortality risk of couples of individuals, according to the stochastic intensity approa...
Saved in:
Published in: | Insurance, mathematics & economics mathematics & economics, 2008-10, Vol.43 (2), p.234-244 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stochastic mortality, i.e. modelling death arrival via a jump process with stochastic intensity, is gaining an increasing reputation as a way to represent mortality risk. This paper is a first attempt to model the mortality risk of couples of individuals, according to the stochastic intensity approach. Dependence between the survival times of the members of a couple is captured by an Archimedean copula.
We also provide a methodology for fitting the joint survival function by working separately on the (analytical) marginals and on the (analytical) copula. First, we provide a sample-based calibration for the intensity, using a time-homogeneous, non mean-reverting, affine process: this gives the marginal survival functions. Then we calibrate and select the best fit copula according to the Wang and Wells [Wang, W., Wells, M.T., 2000b. Model selection and semiparametric inference for bivariate failure-time data. J. Amer. Statis. Assoc. 95, 62–72] methodology for censored data. By coupling the calibrated marginals with the best fit copula, we obtain a joint survival function, which incorporates the stochastic nature of mortality improvements.
We apply the methodology to a well known insurance data set, using a sample generation. The best fit copula turns out to be one listed in [Nelsen, R.B., 2006. An Introduction to Copulas, Second ed. In: Springer Series], which implies not only positive dependence, but dependence increasing with age. |
---|---|
ISSN: | 0167-6687 1873-5959 |
DOI: | 10.1016/j.insmatheco.2008.06.005 |