Loading…
Asymptotics of the price oscillations of a European call option in a tree model
It is well known that the price of a European vanilla option computed in a binomial tree model converges toward the Black‐Scholes price when the time step tends to zero. Moreover, it has been observed that this convergence is of order 1/n in usual models and that it is oscillatory. In this paper, we...
Saved in:
Published in: | Mathematical finance 2004-04, Vol.14 (2), p.271-293 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is well known that the price of a European vanilla option computed in a binomial tree model converges toward the Black‐Scholes price when the time step tends to zero. Moreover, it has been observed that this convergence is of order 1/n in usual models and that it is oscillatory. In this paper, we compute this oscillatory behavior using asymptotics of Laplace integrals, giving explicitly the first terms of the asymptotics. This allows us to show that there is no asymptotic expansion in the usual sense, but that the rate of convergence is indeed of order 1/n in the case of usual binomial models since the second term (in ) vanishes. The next term is of type C2(n)/n, with C2(n) some explicit bounded function of n that has no limit when n tends to infinity. |
---|---|
ISSN: | 0960-1627 1467-9965 |
DOI: | 10.1111/j.0960-1627.2004.00192.x |