Loading…
The non-relativistic limits of the Maxwell and Dirac equations: the role of Galilean and gauge invariance
The aim of this paper is to illustrate four properties of the non-relativistic limits of relativistic theories: (a) that a massless relativistic field may have a meaningful non-relativistic limit, (b) that a relativistic field may have more than one non-relativistic limit, (c) that coupled relativis...
Saved in:
Published in: | Studies in History and Philosophy of Modern Physics 2003-06, Vol.34 (2), p.161-187 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this paper is to illustrate four properties of the non-relativistic limits of relativistic theories: (a) that a massless relativistic field may have a meaningful non-relativistic limit, (b) that a relativistic field may have more than one non-relativistic limit, (c) that coupled relativistic systems may be “more relativistic” than their uncoupled counterparts, and (d) that the properties of the non-relativistic limit of a dynamical equation may differ from those obtained when the limiting equation is based directly on exact Galilean kinematics. These properties are demonstrated through an examination of the non-relativistic limit of the familiar equations of first-quantized QED, i.e., the Dirac and Maxwell equations. The conditions under which each set of equations admits non-relativistic limits are given, particular attention being given to a gauge-invariant formulation of the limiting process especially as it applies to the electromagnetic potentials. The difference between the properties of a limiting theory and an exactly Galilean covariant theory based on the same dynamical equation is demonstrated by examination of the Pauli equation. |
---|---|
ISSN: | 1355-2198 1879-2502 |
DOI: | 10.1016/S1355-2198(03)00005-4 |