Loading…
Bayesian analysis of agricultural field experiments
The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, comple...
Saved in:
Published in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 1999, Vol.61 (4), p.691-746 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5111-598deb0a52405d6aeb1103e3c5c97517b17b49b684ffa1ee0fee81c5cbc6e3693 |
---|---|
cites | |
container_end_page | 746 |
container_issue | 4 |
container_start_page | 691 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 61 |
creator | Besag, J. Higdon, D. |
description | The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, complex formulations can be analysed with comparative ease, by using Markov chain Monte Carlo methods. A key ingredient in the approach is the need for spatial representations of the unobserved fertility patterns. This is discussed in detail. Problems caused by outliers and by jumps in fertility are tackled via hierarchical-t formulations that may find use in other contexts. The paper includes three analyses of variety trials for yield and one example involving binary data; none is entirely straight-forward. Some numerical comparisons with frequentist analyses are made. |
doi_str_mv | 10.1111/1467-9868.00201 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38790560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2680704</jstor_id><sourcerecordid>2680704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5111-598deb0a52405d6aeb1103e3c5c97517b17b49b684ffa1ee0fee81c5cbc6e3693</originalsourceid><addsrcrecordid>eNqFUU1v1DAQjRBIlMKZC4ccELe0dvwVH9kKFkrFV0EcLcc7AS_eJHiy0Pz7zpJqOWJ5PJbfe6On56J4ytkZp3XOpTaVbXRzxljN-L3i5Phyn-5C28pIXj8sHiFuGS1txEkhVn4GjL4vfe_TjBHLoSv99xzDPk377FPZRUibEm5GyHEH_YSPiwedTwhP7vpp8fX1qy8Xb6qrD-u3Fy-vqqDIUKVss4GWeVVLpjbaQ8s5EyCCCtYoblra0ra6kV3nOQDrABpOaBs0kF1xWrxY5o55-LUHnNwuYoCUfA_DHp1ojGVKMyKeL8SQB8QMnRvJqs-z48wdwnGHKNwhCvc3HFJcLooMI4QjvU1-O2TE1v12wmtOx0zFrbXUIpWkGg-Y5c5I7X5MOxr2_M6nx-BTl30fIv7zUHOmhCKaXGh_YoL5fxbd5-vr1WL12SLb4jTko6zWDTNMElwtcMQJbo6wzz8dfbBR7tv7tSO37NP64zu3ErezUqQ3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38790560</pqid></control><display><type>article</type><title>Bayesian analysis of agricultural field experiments</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Besag, J. ; Higdon, D.</creator><creatorcontrib>Besag, J. ; Higdon, D.</creatorcontrib><description>The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, complex formulations can be analysed with comparative ease, by using Markov chain Monte Carlo methods. A key ingredient in the approach is the need for spatial representations of the unobserved fertility patterns. This is discussed in detail. Problems caused by outliers and by jumps in fertility are tackled via hierarchical-t formulations that may find use in other contexts. The paper includes three analyses of variety trials for yield and one example involving binary data; none is entirely straight-forward. Some numerical comparisons with frequentist analyses are made.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/1467-9868.00201</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers Ltd</publisher><subject>Agricultural economics ; Agricultural field trials ; Agriculture ; Analytical estimating ; Applications ; Bayesian analysis ; Bayesian computation ; Bayesian inference ; Bayesian method ; Binary data ; Combining information ; Crop experiments ; Crops ; Design analysis ; Exact sciences and technology ; Experiment design ; Experimentation ; Field experiments ; Field work ; Frequentism ; Insurance, economics, finance ; Intrinsic autoregressions ; Markov chain Monte Carlo methods ; Markov random fields ; Markovian processes ; Mathematical foundations ; Mathematics ; Modeling ; Monte Carlo simulation ; Prior distributions ; Probability and statistics ; Ranking and selection ; Regression analysis ; Sciences and techniques of general use ; Spatial models ; Spatial statistics ; Statistics ; Variety trials</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 1999, Vol.61 (4), p.691-746</ispartof><rights>Copyright 1999 The Royal Statistical Society</rights><rights>1999 Royal Statistical Society</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5111-598deb0a52405d6aeb1103e3c5c97517b17b49b684ffa1ee0fee81c5cbc6e3693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2680704$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2680704$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,4011,27905,27906,27907,33206,58220,58453</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1210535$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a61_3ay_3a1999_3ai_3a4_3ap_3a691-746.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Besag, J.</creatorcontrib><creatorcontrib>Higdon, D.</creatorcontrib><title>Bayesian analysis of agricultural field experiments</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, complex formulations can be analysed with comparative ease, by using Markov chain Monte Carlo methods. A key ingredient in the approach is the need for spatial representations of the unobserved fertility patterns. This is discussed in detail. Problems caused by outliers and by jumps in fertility are tackled via hierarchical-t formulations that may find use in other contexts. The paper includes three analyses of variety trials for yield and one example involving binary data; none is entirely straight-forward. Some numerical comparisons with frequentist analyses are made.</description><subject>Agricultural economics</subject><subject>Agricultural field trials</subject><subject>Agriculture</subject><subject>Analytical estimating</subject><subject>Applications</subject><subject>Bayesian analysis</subject><subject>Bayesian computation</subject><subject>Bayesian inference</subject><subject>Bayesian method</subject><subject>Binary data</subject><subject>Combining information</subject><subject>Crop experiments</subject><subject>Crops</subject><subject>Design analysis</subject><subject>Exact sciences and technology</subject><subject>Experiment design</subject><subject>Experimentation</subject><subject>Field experiments</subject><subject>Field work</subject><subject>Frequentism</subject><subject>Insurance, economics, finance</subject><subject>Intrinsic autoregressions</subject><subject>Markov chain Monte Carlo methods</subject><subject>Markov random fields</subject><subject>Markovian processes</subject><subject>Mathematical foundations</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>Prior distributions</subject><subject>Probability and statistics</subject><subject>Ranking and selection</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Spatial models</subject><subject>Spatial statistics</subject><subject>Statistics</subject><subject>Variety trials</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFUU1v1DAQjRBIlMKZC4ccELe0dvwVH9kKFkrFV0EcLcc7AS_eJHiy0Pz7zpJqOWJ5PJbfe6On56J4ytkZp3XOpTaVbXRzxljN-L3i5Phyn-5C28pIXj8sHiFuGS1txEkhVn4GjL4vfe_TjBHLoSv99xzDPk377FPZRUibEm5GyHEH_YSPiwedTwhP7vpp8fX1qy8Xb6qrD-u3Fy-vqqDIUKVss4GWeVVLpjbaQ8s5EyCCCtYoblra0ra6kV3nOQDrABpOaBs0kF1xWrxY5o55-LUHnNwuYoCUfA_DHp1ojGVKMyKeL8SQB8QMnRvJqs-z48wdwnGHKNwhCvc3HFJcLooMI4QjvU1-O2TE1v12wmtOx0zFrbXUIpWkGg-Y5c5I7X5MOxr2_M6nx-BTl30fIv7zUHOmhCKaXGh_YoL5fxbd5-vr1WL12SLb4jTko6zWDTNMElwtcMQJbo6wzz8dfbBR7tv7tSO37NP64zu3ErezUqQ3</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Besag, J.</creator><creator>Higdon, D.</creator><general>Blackwell Publishers Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>1999</creationdate><title>Bayesian analysis of agricultural field experiments</title><author>Besag, J. ; Higdon, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5111-598deb0a52405d6aeb1103e3c5c97517b17b49b684ffa1ee0fee81c5cbc6e3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Agricultural economics</topic><topic>Agricultural field trials</topic><topic>Agriculture</topic><topic>Analytical estimating</topic><topic>Applications</topic><topic>Bayesian analysis</topic><topic>Bayesian computation</topic><topic>Bayesian inference</topic><topic>Bayesian method</topic><topic>Binary data</topic><topic>Combining information</topic><topic>Crop experiments</topic><topic>Crops</topic><topic>Design analysis</topic><topic>Exact sciences and technology</topic><topic>Experiment design</topic><topic>Experimentation</topic><topic>Field experiments</topic><topic>Field work</topic><topic>Frequentism</topic><topic>Insurance, economics, finance</topic><topic>Intrinsic autoregressions</topic><topic>Markov chain Monte Carlo methods</topic><topic>Markov random fields</topic><topic>Markovian processes</topic><topic>Mathematical foundations</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>Prior distributions</topic><topic>Probability and statistics</topic><topic>Ranking and selection</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Spatial models</topic><topic>Spatial statistics</topic><topic>Statistics</topic><topic>Variety trials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besag, J.</creatorcontrib><creatorcontrib>Higdon, D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besag, J.</au><au>Higdon, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian analysis of agricultural field experiments</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>1999</date><risdate>1999</risdate><volume>61</volume><issue>4</issue><spage>691</spage><epage>746</epage><pages>691-746</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, complex formulations can be analysed with comparative ease, by using Markov chain Monte Carlo methods. A key ingredient in the approach is the need for spatial representations of the unobserved fertility patterns. This is discussed in detail. Problems caused by outliers and by jumps in fertility are tackled via hierarchical-t formulations that may find use in other contexts. The paper includes three analyses of variety trials for yield and one example involving binary data; none is entirely straight-forward. Some numerical comparisons with frequentist analyses are made.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers Ltd</pub><doi>10.1111/1467-9868.00201</doi><tpages>56</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 1999, Vol.61 (4), p.691-746 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_miscellaneous_38790560 |
source | EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection |
subjects | Agricultural economics Agricultural field trials Agriculture Analytical estimating Applications Bayesian analysis Bayesian computation Bayesian inference Bayesian method Binary data Combining information Crop experiments Crops Design analysis Exact sciences and technology Experiment design Experimentation Field experiments Field work Frequentism Insurance, economics, finance Intrinsic autoregressions Markov chain Monte Carlo methods Markov random fields Markovian processes Mathematical foundations Mathematics Modeling Monte Carlo simulation Prior distributions Probability and statistics Ranking and selection Regression analysis Sciences and techniques of general use Spatial models Spatial statistics Statistics Variety trials |
title | Bayesian analysis of agricultural field experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20analysis%20of%20agricultural%20field%20experiments&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Besag,%20J.&rft.date=1999&rft.volume=61&rft.issue=4&rft.spage=691&rft.epage=746&rft.pages=691-746&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/1467-9868.00201&rft_dat=%3Cjstor_proqu%3E2680704%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5111-598deb0a52405d6aeb1103e3c5c97517b17b49b684ffa1ee0fee81c5cbc6e3693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=38790560&rft_id=info:pmid/&rft_jstor_id=2680704&rfr_iscdi=true |