Loading…

Bayesian analysis of agricultural field experiments

The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, comple...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 1999, Vol.61 (4), p.691-746
Main Authors: Besag, J., Higdon, D.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5111-598deb0a52405d6aeb1103e3c5c97517b17b49b684ffa1ee0fee81c5cbc6e3693
cites
container_end_page 746
container_issue 4
container_start_page 691
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 61
creator Besag, J.
Higdon, D.
description The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, complex formulations can be analysed with comparative ease, by using Markov chain Monte Carlo methods. A key ingredient in the approach is the need for spatial representations of the unobserved fertility patterns. This is discussed in detail. Problems caused by outliers and by jumps in fertility are tackled via hierarchical-t formulations that may find use in other contexts. The paper includes three analyses of variety trials for yield and one example involving binary data; none is entirely straight-forward. Some numerical comparisons with frequentist analyses are made.
doi_str_mv 10.1111/1467-9868.00201
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38790560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2680704</jstor_id><sourcerecordid>2680704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5111-598deb0a52405d6aeb1103e3c5c97517b17b49b684ffa1ee0fee81c5cbc6e3693</originalsourceid><addsrcrecordid>eNqFUU1v1DAQjRBIlMKZC4ccELe0dvwVH9kKFkrFV0EcLcc7AS_eJHiy0Pz7zpJqOWJ5PJbfe6On56J4ytkZp3XOpTaVbXRzxljN-L3i5Phyn-5C28pIXj8sHiFuGS1txEkhVn4GjL4vfe_TjBHLoSv99xzDPk377FPZRUibEm5GyHEH_YSPiwedTwhP7vpp8fX1qy8Xb6qrD-u3Fy-vqqDIUKVss4GWeVVLpjbaQ8s5EyCCCtYoblra0ra6kV3nOQDrABpOaBs0kF1xWrxY5o55-LUHnNwuYoCUfA_DHp1ojGVKMyKeL8SQB8QMnRvJqs-z48wdwnGHKNwhCvc3HFJcLooMI4QjvU1-O2TE1v12wmtOx0zFrbXUIpWkGg-Y5c5I7X5MOxr2_M6nx-BTl30fIv7zUHOmhCKaXGh_YoL5fxbd5-vr1WL12SLb4jTko6zWDTNMElwtcMQJbo6wzz8dfbBR7tv7tSO37NP64zu3ErezUqQ3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38790560</pqid></control><display><type>article</type><title>Bayesian analysis of agricultural field experiments</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Besag, J. ; Higdon, D.</creator><creatorcontrib>Besag, J. ; Higdon, D.</creatorcontrib><description>The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, complex formulations can be analysed with comparative ease, by using Markov chain Monte Carlo methods. A key ingredient in the approach is the need for spatial representations of the unobserved fertility patterns. This is discussed in detail. Problems caused by outliers and by jumps in fertility are tackled via hierarchical-t formulations that may find use in other contexts. The paper includes three analyses of variety trials for yield and one example involving binary data; none is entirely straight-forward. Some numerical comparisons with frequentist analyses are made.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/1467-9868.00201</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers Ltd</publisher><subject>Agricultural economics ; Agricultural field trials ; Agriculture ; Analytical estimating ; Applications ; Bayesian analysis ; Bayesian computation ; Bayesian inference ; Bayesian method ; Binary data ; Combining information ; Crop experiments ; Crops ; Design analysis ; Exact sciences and technology ; Experiment design ; Experimentation ; Field experiments ; Field work ; Frequentism ; Insurance, economics, finance ; Intrinsic autoregressions ; Markov chain Monte Carlo methods ; Markov random fields ; Markovian processes ; Mathematical foundations ; Mathematics ; Modeling ; Monte Carlo simulation ; Prior distributions ; Probability and statistics ; Ranking and selection ; Regression analysis ; Sciences and techniques of general use ; Spatial models ; Spatial statistics ; Statistics ; Variety trials</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 1999, Vol.61 (4), p.691-746</ispartof><rights>Copyright 1999 The Royal Statistical Society</rights><rights>1999 Royal Statistical Society</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5111-598deb0a52405d6aeb1103e3c5c97517b17b49b684ffa1ee0fee81c5cbc6e3693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2680704$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2680704$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,4011,27905,27906,27907,33206,58220,58453</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1210535$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a61_3ay_3a1999_3ai_3a4_3ap_3a691-746.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Besag, J.</creatorcontrib><creatorcontrib>Higdon, D.</creatorcontrib><title>Bayesian analysis of agricultural field experiments</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, complex formulations can be analysed with comparative ease, by using Markov chain Monte Carlo methods. A key ingredient in the approach is the need for spatial representations of the unobserved fertility patterns. This is discussed in detail. Problems caused by outliers and by jumps in fertility are tackled via hierarchical-t formulations that may find use in other contexts. The paper includes three analyses of variety trials for yield and one example involving binary data; none is entirely straight-forward. Some numerical comparisons with frequentist analyses are made.</description><subject>Agricultural economics</subject><subject>Agricultural field trials</subject><subject>Agriculture</subject><subject>Analytical estimating</subject><subject>Applications</subject><subject>Bayesian analysis</subject><subject>Bayesian computation</subject><subject>Bayesian inference</subject><subject>Bayesian method</subject><subject>Binary data</subject><subject>Combining information</subject><subject>Crop experiments</subject><subject>Crops</subject><subject>Design analysis</subject><subject>Exact sciences and technology</subject><subject>Experiment design</subject><subject>Experimentation</subject><subject>Field experiments</subject><subject>Field work</subject><subject>Frequentism</subject><subject>Insurance, economics, finance</subject><subject>Intrinsic autoregressions</subject><subject>Markov chain Monte Carlo methods</subject><subject>Markov random fields</subject><subject>Markovian processes</subject><subject>Mathematical foundations</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>Prior distributions</subject><subject>Probability and statistics</subject><subject>Ranking and selection</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Spatial models</subject><subject>Spatial statistics</subject><subject>Statistics</subject><subject>Variety trials</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFUU1v1DAQjRBIlMKZC4ccELe0dvwVH9kKFkrFV0EcLcc7AS_eJHiy0Pz7zpJqOWJ5PJbfe6On56J4ytkZp3XOpTaVbXRzxljN-L3i5Phyn-5C28pIXj8sHiFuGS1txEkhVn4GjL4vfe_TjBHLoSv99xzDPk377FPZRUibEm5GyHEH_YSPiwedTwhP7vpp8fX1qy8Xb6qrD-u3Fy-vqqDIUKVss4GWeVVLpjbaQ8s5EyCCCtYoblra0ra6kV3nOQDrABpOaBs0kF1xWrxY5o55-LUHnNwuYoCUfA_DHp1ojGVKMyKeL8SQB8QMnRvJqs-z48wdwnGHKNwhCvc3HFJcLooMI4QjvU1-O2TE1v12wmtOx0zFrbXUIpWkGg-Y5c5I7X5MOxr2_M6nx-BTl30fIv7zUHOmhCKaXGh_YoL5fxbd5-vr1WL12SLb4jTko6zWDTNMElwtcMQJbo6wzz8dfbBR7tv7tSO37NP64zu3ErezUqQ3</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Besag, J.</creator><creator>Higdon, D.</creator><general>Blackwell Publishers Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>1999</creationdate><title>Bayesian analysis of agricultural field experiments</title><author>Besag, J. ; Higdon, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5111-598deb0a52405d6aeb1103e3c5c97517b17b49b684ffa1ee0fee81c5cbc6e3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Agricultural economics</topic><topic>Agricultural field trials</topic><topic>Agriculture</topic><topic>Analytical estimating</topic><topic>Applications</topic><topic>Bayesian analysis</topic><topic>Bayesian computation</topic><topic>Bayesian inference</topic><topic>Bayesian method</topic><topic>Binary data</topic><topic>Combining information</topic><topic>Crop experiments</topic><topic>Crops</topic><topic>Design analysis</topic><topic>Exact sciences and technology</topic><topic>Experiment design</topic><topic>Experimentation</topic><topic>Field experiments</topic><topic>Field work</topic><topic>Frequentism</topic><topic>Insurance, economics, finance</topic><topic>Intrinsic autoregressions</topic><topic>Markov chain Monte Carlo methods</topic><topic>Markov random fields</topic><topic>Markovian processes</topic><topic>Mathematical foundations</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>Prior distributions</topic><topic>Probability and statistics</topic><topic>Ranking and selection</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Spatial models</topic><topic>Spatial statistics</topic><topic>Statistics</topic><topic>Variety trials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besag, J.</creatorcontrib><creatorcontrib>Higdon, D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besag, J.</au><au>Higdon, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian analysis of agricultural field experiments</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>1999</date><risdate>1999</risdate><volume>61</volume><issue>4</issue><spage>691</spage><epage>746</epage><pages>691-746</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, complex formulations can be analysed with comparative ease, by using Markov chain Monte Carlo methods. A key ingredient in the approach is the need for spatial representations of the unobserved fertility patterns. This is discussed in detail. Problems caused by outliers and by jumps in fertility are tackled via hierarchical-t formulations that may find use in other contexts. The paper includes three analyses of variety trials for yield and one example involving binary data; none is entirely straight-forward. Some numerical comparisons with frequentist analyses are made.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers Ltd</pub><doi>10.1111/1467-9868.00201</doi><tpages>56</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 1999, Vol.61 (4), p.691-746
issn 1369-7412
1467-9868
language eng
recordid cdi_proquest_miscellaneous_38790560
source EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects Agricultural economics
Agricultural field trials
Agriculture
Analytical estimating
Applications
Bayesian analysis
Bayesian computation
Bayesian inference
Bayesian method
Binary data
Combining information
Crop experiments
Crops
Design analysis
Exact sciences and technology
Experiment design
Experimentation
Field experiments
Field work
Frequentism
Insurance, economics, finance
Intrinsic autoregressions
Markov chain Monte Carlo methods
Markov random fields
Markovian processes
Mathematical foundations
Mathematics
Modeling
Monte Carlo simulation
Prior distributions
Probability and statistics
Ranking and selection
Regression analysis
Sciences and techniques of general use
Spatial models
Spatial statistics
Statistics
Variety trials
title Bayesian analysis of agricultural field experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20analysis%20of%20agricultural%20field%20experiments&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Besag,%20J.&rft.date=1999&rft.volume=61&rft.issue=4&rft.spage=691&rft.epage=746&rft.pages=691-746&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/1467-9868.00201&rft_dat=%3Cjstor_proqu%3E2680704%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5111-598deb0a52405d6aeb1103e3c5c97517b17b49b684ffa1ee0fee81c5cbc6e3693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=38790560&rft_id=info:pmid/&rft_jstor_id=2680704&rfr_iscdi=true