Loading…

Noncausality in Continuous Time

In this paper, we define different concepts of noncausality for continuous-time processes, using conditional independence and decomposition of semi-martingales. These definitions extend the ones already given in the case of discrete-time processes. As in the discrete-time setup, continuous-time nonc...

Full description

Saved in:
Bibliographic Details
Published in:Econometrica 1996-09, Vol.64 (5), p.1195-1212
Main Authors: Florens, Jean-Pierre, Fougere, Denis
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we define different concepts of noncausality for continuous-time processes, using conditional independence and decomposition of semi-martingales. These definitions extend the ones already given in the case of discrete-time processes. As in the discrete-time setup, continuous-time noncausality is a property concerned with the prediction horizon (global versus instantaneous noncausality) and the nature of the prediction (strong versus weak noncausality). Relations between the resulting continuous-time noncausality concepts are then studied for the class of decomposable semi-martingales, for which, in general, the weak instantaneous noncausality does not imply the strong global noncausality. The paper than characterizes these different concepts of noncausality in the cases of counting processes and Markov processes.
ISSN:0012-9682
1468-0262
DOI:10.2307/2171962