Loading…
Noncausality in Continuous Time
In this paper, we define different concepts of noncausality for continuous-time processes, using conditional independence and decomposition of semi-martingales. These definitions extend the ones already given in the case of discrete-time processes. As in the discrete-time setup, continuous-time nonc...
Saved in:
Published in: | Econometrica 1996-09, Vol.64 (5), p.1195-1212 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-26556b23101bc8ff94f174d13a3b86cc226f063f0d4975ea65239c4b0f315b183 |
---|---|
cites | |
container_end_page | 1212 |
container_issue | 5 |
container_start_page | 1195 |
container_title | Econometrica |
container_volume | 64 |
creator | Florens, Jean-Pierre Fougere, Denis |
description | In this paper, we define different concepts of noncausality for continuous-time processes, using conditional independence and decomposition of semi-martingales. These definitions extend the ones already given in the case of discrete-time processes. As in the discrete-time setup, continuous-time noncausality is a property concerned with the prediction horizon (global versus instantaneous noncausality) and the nature of the prediction (strong versus weak noncausality). Relations between the resulting continuous-time noncausality concepts are then studied for the class of decomposable semi-martingales, for which, in general, the weak instantaneous noncausality does not imply the strong global noncausality. The paper than characterizes these different concepts of noncausality in the cases of counting processes and Markov processes. |
doi_str_mv | 10.2307/2171962 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_39010849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2171962</jstor_id><sourcerecordid>2171962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-26556b23101bc8ff94f174d13a3b86cc226f063f0d4975ea65239c4b0f315b183</originalsourceid><addsrcrecordid>eNp10EtLw0AUBeBBFKxV_AkWFV1F773zyMyyFF9QdFPXYTKdgZQ0qTPJov_eSIuCULhwNx-Hw2HsEuGBOOSPhDkaRUdshELpDEjRMRsBIGVGaTplZymtAEAON2JX723jbJ9sXXXbSdVMZm3TVU3f9mmyqNb-nJ0EWyd_sf9j9vn8tJi9ZvOPl7fZdJ45oajLSEmpSuIIWDodghEBc7FEbnmplXNEKoDiAZbC5NJbJYkbJ0oIHGWJmo_Z3S53E9uv3qeuWFfJ-bq2jR-6FNwAghZmgNf_4KrtYzN0Kwi4znPQ-YBuDiGUUoDUSohB3e-Ui21K0YdiE6u1jdsCofjZsthvOcjbfZ5NztYh2sZV6ZdzNEKS-GOr1LXxYNo3Esh5NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203877087</pqid></control><display><type>article</type><title>Noncausality in Continuous Time</title><source>EconLit s plnými texty</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><creator>Florens, Jean-Pierre ; Fougere, Denis</creator><creatorcontrib>Florens, Jean-Pierre ; Fougere, Denis</creatorcontrib><description>In this paper, we define different concepts of noncausality for continuous-time processes, using conditional independence and decomposition of semi-martingales. These definitions extend the ones already given in the case of discrete-time processes. As in the discrete-time setup, continuous-time noncausality is a property concerned with the prediction horizon (global versus instantaneous noncausality) and the nature of the prediction (strong versus weak noncausality). Relations between the resulting continuous-time noncausality concepts are then studied for the class of decomposable semi-martingales, for which, in general, the weak instantaneous noncausality does not imply the strong global noncausality. The paper than characterizes these different concepts of noncausality in the cases of counting processes and Markov processes.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.2307/2171962</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Malden, MA: Econometric Society</publisher><subject>Causality ; Econometric models ; Econometrics ; Economic models ; Economic theory ; Exact sciences and technology ; Markov analysis ; Markov processes ; Markovian processes ; Martingale ; Martingales ; Mathematical functions ; Mathematical vectors ; Mathematics ; Partial differential equations ; Probabilities ; Probability and statistics ; Probability theory and stochastic processes ; Random variables ; Sciences and techniques of general use ; Stochastic processes ; Stopping distances ; Studies ; Time series</subject><ispartof>Econometrica, 1996-09, Vol.64 (5), p.1195-1212</ispartof><rights>Copyright 1996 Econometric Society</rights><rights>1996 INIST-CNRS</rights><rights>Copyright Econometric Society Sep 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-26556b23101bc8ff94f174d13a3b86cc226f063f0d4975ea65239c4b0f315b183</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/203877087/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/203877087?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,11906,12847,21394,27924,27925,33223,33224,33611,33612,36050,36051,36060,36061,43733,44361,44363,58238,58471,74093,74765,74767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3194524$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Florens, Jean-Pierre</creatorcontrib><creatorcontrib>Fougere, Denis</creatorcontrib><title>Noncausality in Continuous Time</title><title>Econometrica</title><description>In this paper, we define different concepts of noncausality for continuous-time processes, using conditional independence and decomposition of semi-martingales. These definitions extend the ones already given in the case of discrete-time processes. As in the discrete-time setup, continuous-time noncausality is a property concerned with the prediction horizon (global versus instantaneous noncausality) and the nature of the prediction (strong versus weak noncausality). Relations between the resulting continuous-time noncausality concepts are then studied for the class of decomposable semi-martingales, for which, in general, the weak instantaneous noncausality does not imply the strong global noncausality. The paper than characterizes these different concepts of noncausality in the cases of counting processes and Markov processes.</description><subject>Causality</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Exact sciences and technology</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Markovian processes</subject><subject>Martingale</subject><subject>Martingales</subject><subject>Mathematical functions</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic processes</subject><subject>Stopping distances</subject><subject>Studies</subject><subject>Time series</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><recordid>eNp10EtLw0AUBeBBFKxV_AkWFV1F773zyMyyFF9QdFPXYTKdgZQ0qTPJov_eSIuCULhwNx-Hw2HsEuGBOOSPhDkaRUdshELpDEjRMRsBIGVGaTplZymtAEAON2JX723jbJ9sXXXbSdVMZm3TVU3f9mmyqNb-nJ0EWyd_sf9j9vn8tJi9ZvOPl7fZdJ45oajLSEmpSuIIWDodghEBc7FEbnmplXNEKoDiAZbC5NJbJYkbJ0oIHGWJmo_Z3S53E9uv3qeuWFfJ-bq2jR-6FNwAghZmgNf_4KrtYzN0Kwi4znPQ-YBuDiGUUoDUSohB3e-Ui21K0YdiE6u1jdsCofjZsthvOcjbfZ5NztYh2sZV6ZdzNEKS-GOr1LXxYNo3Esh5NA</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Florens, Jean-Pierre</creator><creator>Fougere, Denis</creator><general>Econometric Society</general><general>Blackwell</general><general>George Banta Pub. Co. for the Econometric Society</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>FIXVA</scope><scope>FKUCP</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0T</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19960901</creationdate><title>Noncausality in Continuous Time</title><author>Florens, Jean-Pierre ; Fougere, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-26556b23101bc8ff94f174d13a3b86cc226f063f0d4975ea65239c4b0f315b183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Causality</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Exact sciences and technology</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Markovian processes</topic><topic>Martingale</topic><topic>Martingales</topic><topic>Mathematical functions</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic processes</topic><topic>Stopping distances</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florens, Jean-Pierre</creatorcontrib><creatorcontrib>Fougere, Denis</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 03</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Health Management Database (Proquest)</collection><collection>ProQuest research library</collection><collection>Social Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florens, Jean-Pierre</au><au>Fougere, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncausality in Continuous Time</atitle><jtitle>Econometrica</jtitle><date>1996-09-01</date><risdate>1996</risdate><volume>64</volume><issue>5</issue><spage>1195</spage><epage>1212</epage><pages>1195-1212</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>In this paper, we define different concepts of noncausality for continuous-time processes, using conditional independence and decomposition of semi-martingales. These definitions extend the ones already given in the case of discrete-time processes. As in the discrete-time setup, continuous-time noncausality is a property concerned with the prediction horizon (global versus instantaneous noncausality) and the nature of the prediction (strong versus weak noncausality). Relations between the resulting continuous-time noncausality concepts are then studied for the class of decomposable semi-martingales, for which, in general, the weak instantaneous noncausality does not imply the strong global noncausality. The paper than characterizes these different concepts of noncausality in the cases of counting processes and Markov processes.</abstract><cop>Malden, MA</cop><pub>Econometric Society</pub><doi>10.2307/2171962</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9682 |
ispartof | Econometrica, 1996-09, Vol.64 (5), p.1195-1212 |
issn | 0012-9682 1468-0262 |
language | eng |
recordid | cdi_proquest_miscellaneous_39010849 |
source | EconLit s plnými texty; International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; Social Science Premium Collection (Proquest) (PQ_SDU_P3) |
subjects | Causality Econometric models Econometrics Economic models Economic theory Exact sciences and technology Markov analysis Markov processes Markovian processes Martingale Martingales Mathematical functions Mathematical vectors Mathematics Partial differential equations Probabilities Probability and statistics Probability theory and stochastic processes Random variables Sciences and techniques of general use Stochastic processes Stopping distances Studies Time series |
title | Noncausality in Continuous Time |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncausality%20in%20Continuous%20Time&rft.jtitle=Econometrica&rft.au=Florens,%20Jean-Pierre&rft.date=1996-09-01&rft.volume=64&rft.issue=5&rft.spage=1195&rft.epage=1212&rft.pages=1195-1212&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.2307/2171962&rft_dat=%3Cjstor_proqu%3E2171962%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-26556b23101bc8ff94f174d13a3b86cc226f063f0d4975ea65239c4b0f315b183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=203877087&rft_id=info:pmid/&rft_jstor_id=2171962&rfr_iscdi=true |