Loading…

Noncausality in Continuous Time

In this paper, we define different concepts of noncausality for continuous-time processes, using conditional independence and decomposition of semi-martingales. These definitions extend the ones already given in the case of discrete-time processes. As in the discrete-time setup, continuous-time nonc...

Full description

Saved in:
Bibliographic Details
Published in:Econometrica 1996-09, Vol.64 (5), p.1195-1212
Main Authors: Florens, Jean-Pierre, Fougere, Denis
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-26556b23101bc8ff94f174d13a3b86cc226f063f0d4975ea65239c4b0f315b183
cites
container_end_page 1212
container_issue 5
container_start_page 1195
container_title Econometrica
container_volume 64
creator Florens, Jean-Pierre
Fougere, Denis
description In this paper, we define different concepts of noncausality for continuous-time processes, using conditional independence and decomposition of semi-martingales. These definitions extend the ones already given in the case of discrete-time processes. As in the discrete-time setup, continuous-time noncausality is a property concerned with the prediction horizon (global versus instantaneous noncausality) and the nature of the prediction (strong versus weak noncausality). Relations between the resulting continuous-time noncausality concepts are then studied for the class of decomposable semi-martingales, for which, in general, the weak instantaneous noncausality does not imply the strong global noncausality. The paper than characterizes these different concepts of noncausality in the cases of counting processes and Markov processes.
doi_str_mv 10.2307/2171962
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_39010849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2171962</jstor_id><sourcerecordid>2171962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-26556b23101bc8ff94f174d13a3b86cc226f063f0d4975ea65239c4b0f315b183</originalsourceid><addsrcrecordid>eNp10EtLw0AUBeBBFKxV_AkWFV1F773zyMyyFF9QdFPXYTKdgZQ0qTPJov_eSIuCULhwNx-Hw2HsEuGBOOSPhDkaRUdshELpDEjRMRsBIGVGaTplZymtAEAON2JX723jbJ9sXXXbSdVMZm3TVU3f9mmyqNb-nJ0EWyd_sf9j9vn8tJi9ZvOPl7fZdJ45oajLSEmpSuIIWDodghEBc7FEbnmplXNEKoDiAZbC5NJbJYkbJ0oIHGWJmo_Z3S53E9uv3qeuWFfJ-bq2jR-6FNwAghZmgNf_4KrtYzN0Kwi4znPQ-YBuDiGUUoDUSohB3e-Ui21K0YdiE6u1jdsCofjZsthvOcjbfZ5NztYh2sZV6ZdzNEKS-GOr1LXxYNo3Esh5NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203877087</pqid></control><display><type>article</type><title>Noncausality in Continuous Time</title><source>EconLit s plnými texty</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><creator>Florens, Jean-Pierre ; Fougere, Denis</creator><creatorcontrib>Florens, Jean-Pierre ; Fougere, Denis</creatorcontrib><description>In this paper, we define different concepts of noncausality for continuous-time processes, using conditional independence and decomposition of semi-martingales. These definitions extend the ones already given in the case of discrete-time processes. As in the discrete-time setup, continuous-time noncausality is a property concerned with the prediction horizon (global versus instantaneous noncausality) and the nature of the prediction (strong versus weak noncausality). Relations between the resulting continuous-time noncausality concepts are then studied for the class of decomposable semi-martingales, for which, in general, the weak instantaneous noncausality does not imply the strong global noncausality. The paper than characterizes these different concepts of noncausality in the cases of counting processes and Markov processes.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.2307/2171962</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Malden, MA: Econometric Society</publisher><subject>Causality ; Econometric models ; Econometrics ; Economic models ; Economic theory ; Exact sciences and technology ; Markov analysis ; Markov processes ; Markovian processes ; Martingale ; Martingales ; Mathematical functions ; Mathematical vectors ; Mathematics ; Partial differential equations ; Probabilities ; Probability and statistics ; Probability theory and stochastic processes ; Random variables ; Sciences and techniques of general use ; Stochastic processes ; Stopping distances ; Studies ; Time series</subject><ispartof>Econometrica, 1996-09, Vol.64 (5), p.1195-1212</ispartof><rights>Copyright 1996 Econometric Society</rights><rights>1996 INIST-CNRS</rights><rights>Copyright Econometric Society Sep 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-26556b23101bc8ff94f174d13a3b86cc226f063f0d4975ea65239c4b0f315b183</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/203877087/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/203877087?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,11906,12847,21394,27924,27925,33223,33224,33611,33612,36050,36051,36060,36061,43733,44361,44363,58238,58471,74093,74765,74767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3194524$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Florens, Jean-Pierre</creatorcontrib><creatorcontrib>Fougere, Denis</creatorcontrib><title>Noncausality in Continuous Time</title><title>Econometrica</title><description>In this paper, we define different concepts of noncausality for continuous-time processes, using conditional independence and decomposition of semi-martingales. These definitions extend the ones already given in the case of discrete-time processes. As in the discrete-time setup, continuous-time noncausality is a property concerned with the prediction horizon (global versus instantaneous noncausality) and the nature of the prediction (strong versus weak noncausality). Relations between the resulting continuous-time noncausality concepts are then studied for the class of decomposable semi-martingales, for which, in general, the weak instantaneous noncausality does not imply the strong global noncausality. The paper than characterizes these different concepts of noncausality in the cases of counting processes and Markov processes.</description><subject>Causality</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Exact sciences and technology</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Markovian processes</subject><subject>Martingale</subject><subject>Martingales</subject><subject>Mathematical functions</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic processes</subject><subject>Stopping distances</subject><subject>Studies</subject><subject>Time series</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><recordid>eNp10EtLw0AUBeBBFKxV_AkWFV1F773zyMyyFF9QdFPXYTKdgZQ0qTPJov_eSIuCULhwNx-Hw2HsEuGBOOSPhDkaRUdshELpDEjRMRsBIGVGaTplZymtAEAON2JX723jbJ9sXXXbSdVMZm3TVU3f9mmyqNb-nJ0EWyd_sf9j9vn8tJi9ZvOPl7fZdJ45oajLSEmpSuIIWDodghEBc7FEbnmplXNEKoDiAZbC5NJbJYkbJ0oIHGWJmo_Z3S53E9uv3qeuWFfJ-bq2jR-6FNwAghZmgNf_4KrtYzN0Kwi4znPQ-YBuDiGUUoDUSohB3e-Ui21K0YdiE6u1jdsCofjZsthvOcjbfZ5NztYh2sZV6ZdzNEKS-GOr1LXxYNo3Esh5NA</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Florens, Jean-Pierre</creator><creator>Fougere, Denis</creator><general>Econometric Society</general><general>Blackwell</general><general>George Banta Pub. Co. for the Econometric Society</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>FIXVA</scope><scope>FKUCP</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0T</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19960901</creationdate><title>Noncausality in Continuous Time</title><author>Florens, Jean-Pierre ; Fougere, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-26556b23101bc8ff94f174d13a3b86cc226f063f0d4975ea65239c4b0f315b183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Causality</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Exact sciences and technology</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Markovian processes</topic><topic>Martingale</topic><topic>Martingales</topic><topic>Mathematical functions</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic processes</topic><topic>Stopping distances</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florens, Jean-Pierre</creatorcontrib><creatorcontrib>Fougere, Denis</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 03</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Health Management Database (Proquest)</collection><collection>ProQuest research library</collection><collection>Social Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florens, Jean-Pierre</au><au>Fougere, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncausality in Continuous Time</atitle><jtitle>Econometrica</jtitle><date>1996-09-01</date><risdate>1996</risdate><volume>64</volume><issue>5</issue><spage>1195</spage><epage>1212</epage><pages>1195-1212</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>In this paper, we define different concepts of noncausality for continuous-time processes, using conditional independence and decomposition of semi-martingales. These definitions extend the ones already given in the case of discrete-time processes. As in the discrete-time setup, continuous-time noncausality is a property concerned with the prediction horizon (global versus instantaneous noncausality) and the nature of the prediction (strong versus weak noncausality). Relations between the resulting continuous-time noncausality concepts are then studied for the class of decomposable semi-martingales, for which, in general, the weak instantaneous noncausality does not imply the strong global noncausality. The paper than characterizes these different concepts of noncausality in the cases of counting processes and Markov processes.</abstract><cop>Malden, MA</cop><pub>Econometric Society</pub><doi>10.2307/2171962</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-9682
ispartof Econometrica, 1996-09, Vol.64 (5), p.1195-1212
issn 0012-9682
1468-0262
language eng
recordid cdi_proquest_miscellaneous_39010849
source EconLit s plnými texty; International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; Social Science Premium Collection (Proquest) (PQ_SDU_P3)
subjects Causality
Econometric models
Econometrics
Economic models
Economic theory
Exact sciences and technology
Markov analysis
Markov processes
Markovian processes
Martingale
Martingales
Mathematical functions
Mathematical vectors
Mathematics
Partial differential equations
Probabilities
Probability and statistics
Probability theory and stochastic processes
Random variables
Sciences and techniques of general use
Stochastic processes
Stopping distances
Studies
Time series
title Noncausality in Continuous Time
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncausality%20in%20Continuous%20Time&rft.jtitle=Econometrica&rft.au=Florens,%20Jean-Pierre&rft.date=1996-09-01&rft.volume=64&rft.issue=5&rft.spage=1195&rft.epage=1212&rft.pages=1195-1212&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.2307/2171962&rft_dat=%3Cjstor_proqu%3E2171962%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-26556b23101bc8ff94f174d13a3b86cc226f063f0d4975ea65239c4b0f315b183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=203877087&rft_id=info:pmid/&rft_jstor_id=2171962&rfr_iscdi=true