Loading…
Exponential Hedging and Entropic Penalties
We solve the problem of hedging a contingent claim B by maximizing the expected exponential utility of terminal net wealth for a locally bounded semimartingale X. We prove a duality relation between this problem and a dual problem for local martingale measures Q for X where we either minimize relati...
Saved in:
Published in: | Mathematical finance 2002-04, Vol.12 (2), p.99-123 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We solve the problem of hedging a contingent claim B by maximizing the expected exponential utility of terminal net wealth for a locally bounded semimartingale X. We prove a duality relation between this problem and a dual problem for local martingale measures Q for X where we either minimize relative entropy minus a correction term involving B or maximize the Q‐price of B subject to an entropic penalty term. Our result is robust in the sense that it holds for several choices of the space of hedging strategies. Applications include a new characterization of the minimal martingale measure and risk‐averse asymptotics. |
---|---|
ISSN: | 0960-1627 1467-9965 |
DOI: | 10.1111/1467-9965.02001 |