Loading…

Exponential Hedging and Entropic Penalties

We solve the problem of hedging a contingent claim B by maximizing the expected exponential utility of terminal net wealth for a locally bounded semimartingale X. We prove a duality relation between this problem and a dual problem for local martingale measures Q for X where we either minimize relati...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical finance 2002-04, Vol.12 (2), p.99-123
Main Authors: Delbaen, Freddy, Grandits, Peter, Rheinländer, Thorsten, Samperi, Dominick, Schweizer, Martin, Stricker, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6161-5cd80201fd1aded6a966fe6f4ce6886fcb59971ade0ff5250662c09c46045a0c3
cites cdi_FETCH-LOGICAL-c6161-5cd80201fd1aded6a966fe6f4ce6886fcb59971ade0ff5250662c09c46045a0c3
container_end_page 123
container_issue 2
container_start_page 99
container_title Mathematical finance
container_volume 12
creator Delbaen, Freddy
Grandits, Peter
Rheinländer, Thorsten
Samperi, Dominick
Schweizer, Martin
Stricker, Christophe
description We solve the problem of hedging a contingent claim B by maximizing the expected exponential utility of terminal net wealth for a locally bounded semimartingale X. We prove a duality relation between this problem and a dual problem for local martingale measures Q for X where we either minimize relative entropy minus a correction term involving B or maximize the Q‐price of B subject to an entropic penalty term. Our result is robust in the sense that it holds for several choices of the space of hedging strategies. Applications include a new characterization of the minimal martingale measure and risk‐averse asymptotics.
doi_str_mv 10.1111/1467-9965.02001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_39016296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>113105024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6161-5cd80201fd1aded6a966fe6f4ce6886fcb59971ade0ff5250662c09c46045a0c3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMeZa8SBA1KoncemPlZVWypePYCQuKyMY1OXNAl2Cu3f4xDUAxcsjb2yZ9azQ8gZo1fMrz5LIAs5h_SKRpSyPdLb3eyTHuVAQwZRdkiOnFtSSpMkyXrkcrypq1KVjRFFcK3yN1O-BaLMg3HZ2Ko2MpirUhSNUe6EHGhROHX6ex6Tp8n4cXQd3j5MZ6PhbSiBAQtTmQ-8A6ZzJnKVg-AAWoFOpILBALR8TTnP2jeqdRqlFCCSlMsEaJIKKuNjctH1rW31sVauwZVxUhWFKFW1dhhz6gfh4Innf4jLam29W4dR7CcceI4n9TuStJVzVmmsrVkJu0VGsQ0O25iwjQl_gvOKWaewqlZyR38txEo0C23wE2PBIr9tPbykLU1betQenCOLYlw0K98r7Xp9mUJt__sa74aT2a-HsNMZ16jNTifsO0IWZyk-30_x5Wb-OI9vGCbxN0x7lZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230008963</pqid></control><display><type>article</type><title>Exponential Hedging and Entropic Penalties</title><source>EconLit s plnými texty</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>Wiley</source><creator>Delbaen, Freddy ; Grandits, Peter ; Rheinländer, Thorsten ; Samperi, Dominick ; Schweizer, Martin ; Stricker, Christophe</creator><creatorcontrib>Delbaen, Freddy ; Grandits, Peter ; Rheinländer, Thorsten ; Samperi, Dominick ; Schweizer, Martin ; Stricker, Christophe</creatorcontrib><description>We solve the problem of hedging a contingent claim B by maximizing the expected exponential utility of terminal net wealth for a locally bounded semimartingale X. We prove a duality relation between this problem and a dual problem for local martingale measures Q for X where we either minimize relative entropy minus a correction term involving B or maximize the Q‐price of B subject to an entropic penalty term. Our result is robust in the sense that it holds for several choices of the space of hedging strategies. Applications include a new characterization of the minimal martingale measure and risk‐averse asymptotics.</description><identifier>ISSN: 0960-1627</identifier><identifier>EISSN: 1467-9965</identifier><identifier>DOI: 10.1111/1467-9965.02001</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishers, Inc</publisher><subject>duality ; Entropy ; exponential utility ; Hedging ; Investment ; Mathematical models ; minimal entropy martingale measure ; minimal martingale measure ; relative entropy ; reverse Hölder inequalities ; Risk ; Studies ; Utility functions</subject><ispartof>Mathematical finance, 2002-04, Vol.12 (2), p.99-123</ispartof><rights>Copyright Blackwell Publishers Inc. Apr 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6161-5cd80201fd1aded6a966fe6f4ce6886fcb59971ade0ff5250662c09c46045a0c3</citedby><cites>FETCH-LOGICAL-c6161-5cd80201fd1aded6a966fe6f4ce6886fcb59971ade0ff5250662c09c46045a0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223,33224</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blamathfi/v_3a12_3ay_3a2002_3ai_3a2_3ap_3a99-123.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Delbaen, Freddy</creatorcontrib><creatorcontrib>Grandits, Peter</creatorcontrib><creatorcontrib>Rheinländer, Thorsten</creatorcontrib><creatorcontrib>Samperi, Dominick</creatorcontrib><creatorcontrib>Schweizer, Martin</creatorcontrib><creatorcontrib>Stricker, Christophe</creatorcontrib><title>Exponential Hedging and Entropic Penalties</title><title>Mathematical finance</title><description>We solve the problem of hedging a contingent claim B by maximizing the expected exponential utility of terminal net wealth for a locally bounded semimartingale X. We prove a duality relation between this problem and a dual problem for local martingale measures Q for X where we either minimize relative entropy minus a correction term involving B or maximize the Q‐price of B subject to an entropic penalty term. Our result is robust in the sense that it holds for several choices of the space of hedging strategies. Applications include a new characterization of the minimal martingale measure and risk‐averse asymptotics.</description><subject>duality</subject><subject>Entropy</subject><subject>exponential utility</subject><subject>Hedging</subject><subject>Investment</subject><subject>Mathematical models</subject><subject>minimal entropy martingale measure</subject><subject>minimal martingale measure</subject><subject>relative entropy</subject><subject>reverse Hölder inequalities</subject><subject>Risk</subject><subject>Studies</subject><subject>Utility functions</subject><issn>0960-1627</issn><issn>1467-9965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFUMtOwzAQtBBIlMeZa8SBA1KoncemPlZVWypePYCQuKyMY1OXNAl2Cu3f4xDUAxcsjb2yZ9azQ8gZo1fMrz5LIAs5h_SKRpSyPdLb3eyTHuVAQwZRdkiOnFtSSpMkyXrkcrypq1KVjRFFcK3yN1O-BaLMg3HZ2Ko2MpirUhSNUe6EHGhROHX6ex6Tp8n4cXQd3j5MZ6PhbSiBAQtTmQ-8A6ZzJnKVg-AAWoFOpILBALR8TTnP2jeqdRqlFCCSlMsEaJIKKuNjctH1rW31sVauwZVxUhWFKFW1dhhz6gfh4Innf4jLam29W4dR7CcceI4n9TuStJVzVmmsrVkJu0VGsQ0O25iwjQl_gvOKWaewqlZyR38txEo0C23wE2PBIr9tPbykLU1betQenCOLYlw0K98r7Xp9mUJt__sa74aT2a-HsNMZ16jNTifsO0IWZyk-30_x5Wb-OI9vGCbxN0x7lZc</recordid><startdate>200204</startdate><enddate>200204</enddate><creator>Delbaen, Freddy</creator><creator>Grandits, Peter</creator><creator>Rheinländer, Thorsten</creator><creator>Samperi, Dominick</creator><creator>Schweizer, Martin</creator><creator>Stricker, Christophe</creator><general>Blackwell Publishers, Inc</general><general>Wiley Blackwell</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>200204</creationdate><title>Exponential Hedging and Entropic Penalties</title><author>Delbaen, Freddy ; Grandits, Peter ; Rheinländer, Thorsten ; Samperi, Dominick ; Schweizer, Martin ; Stricker, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6161-5cd80201fd1aded6a966fe6f4ce6886fcb59971ade0ff5250662c09c46045a0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>duality</topic><topic>Entropy</topic><topic>exponential utility</topic><topic>Hedging</topic><topic>Investment</topic><topic>Mathematical models</topic><topic>minimal entropy martingale measure</topic><topic>minimal martingale measure</topic><topic>relative entropy</topic><topic>reverse Hölder inequalities</topic><topic>Risk</topic><topic>Studies</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delbaen, Freddy</creatorcontrib><creatorcontrib>Grandits, Peter</creatorcontrib><creatorcontrib>Rheinländer, Thorsten</creatorcontrib><creatorcontrib>Samperi, Dominick</creatorcontrib><creatorcontrib>Schweizer, Martin</creatorcontrib><creatorcontrib>Stricker, Christophe</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delbaen, Freddy</au><au>Grandits, Peter</au><au>Rheinländer, Thorsten</au><au>Samperi, Dominick</au><au>Schweizer, Martin</au><au>Stricker, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential Hedging and Entropic Penalties</atitle><jtitle>Mathematical finance</jtitle><date>2002-04</date><risdate>2002</risdate><volume>12</volume><issue>2</issue><spage>99</spage><epage>123</epage><pages>99-123</pages><issn>0960-1627</issn><eissn>1467-9965</eissn><abstract>We solve the problem of hedging a contingent claim B by maximizing the expected exponential utility of terminal net wealth for a locally bounded semimartingale X. We prove a duality relation between this problem and a dual problem for local martingale measures Q for X where we either minimize relative entropy minus a correction term involving B or maximize the Q‐price of B subject to an entropic penalty term. Our result is robust in the sense that it holds for several choices of the space of hedging strategies. Applications include a new characterization of the minimal martingale measure and risk‐averse asymptotics.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishers, Inc</pub><doi>10.1111/1467-9965.02001</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1627
ispartof Mathematical finance, 2002-04, Vol.12 (2), p.99-123
issn 0960-1627
1467-9965
language eng
recordid cdi_proquest_miscellaneous_39016296
source EconLit s plnými texty; International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; Wiley
subjects duality
Entropy
exponential utility
Hedging
Investment
Mathematical models
minimal entropy martingale measure
minimal martingale measure
relative entropy
reverse Hölder inequalities
Risk
Studies
Utility functions
title Exponential Hedging and Entropic Penalties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20Hedging%20and%20Entropic%20Penalties&rft.jtitle=Mathematical%20finance&rft.au=Delbaen,%20Freddy&rft.date=2002-04&rft.volume=12&rft.issue=2&rft.spage=99&rft.epage=123&rft.pages=99-123&rft.issn=0960-1627&rft.eissn=1467-9965&rft_id=info:doi/10.1111/1467-9965.02001&rft_dat=%3Cproquest_cross%3E113105024%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6161-5cd80201fd1aded6a966fe6f4ce6886fcb59971ade0ff5250662c09c46045a0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230008963&rft_id=info:pmid/&rfr_iscdi=true