Loading…
Exponential Hedging and Entropic Penalties
We solve the problem of hedging a contingent claim B by maximizing the expected exponential utility of terminal net wealth for a locally bounded semimartingale X. We prove a duality relation between this problem and a dual problem for local martingale measures Q for X where we either minimize relati...
Saved in:
Published in: | Mathematical finance 2002-04, Vol.12 (2), p.99-123 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6161-5cd80201fd1aded6a966fe6f4ce6886fcb59971ade0ff5250662c09c46045a0c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c6161-5cd80201fd1aded6a966fe6f4ce6886fcb59971ade0ff5250662c09c46045a0c3 |
container_end_page | 123 |
container_issue | 2 |
container_start_page | 99 |
container_title | Mathematical finance |
container_volume | 12 |
creator | Delbaen, Freddy Grandits, Peter Rheinländer, Thorsten Samperi, Dominick Schweizer, Martin Stricker, Christophe |
description | We solve the problem of hedging a contingent claim B by maximizing the expected exponential utility of terminal net wealth for a locally bounded semimartingale X. We prove a duality relation between this problem and a dual problem for local martingale measures Q for X where we either minimize relative entropy minus a correction term involving B or maximize the Q‐price of B subject to an entropic penalty term. Our result is robust in the sense that it holds for several choices of the space of hedging strategies. Applications include a new characterization of the minimal martingale measure and risk‐averse asymptotics. |
doi_str_mv | 10.1111/1467-9965.02001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_39016296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>113105024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6161-5cd80201fd1aded6a966fe6f4ce6886fcb59971ade0ff5250662c09c46045a0c3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMeZa8SBA1KoncemPlZVWypePYCQuKyMY1OXNAl2Cu3f4xDUAxcsjb2yZ9azQ8gZo1fMrz5LIAs5h_SKRpSyPdLb3eyTHuVAQwZRdkiOnFtSSpMkyXrkcrypq1KVjRFFcK3yN1O-BaLMg3HZ2Ko2MpirUhSNUe6EHGhROHX6ex6Tp8n4cXQd3j5MZ6PhbSiBAQtTmQ-8A6ZzJnKVg-AAWoFOpILBALR8TTnP2jeqdRqlFCCSlMsEaJIKKuNjctH1rW31sVauwZVxUhWFKFW1dhhz6gfh4Innf4jLam29W4dR7CcceI4n9TuStJVzVmmsrVkJu0VGsQ0O25iwjQl_gvOKWaewqlZyR38txEo0C23wE2PBIr9tPbykLU1betQenCOLYlw0K98r7Xp9mUJt__sa74aT2a-HsNMZ16jNTifsO0IWZyk-30_x5Wb-OI9vGCbxN0x7lZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230008963</pqid></control><display><type>article</type><title>Exponential Hedging and Entropic Penalties</title><source>EconLit s plnými texty</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>Wiley</source><creator>Delbaen, Freddy ; Grandits, Peter ; Rheinländer, Thorsten ; Samperi, Dominick ; Schweizer, Martin ; Stricker, Christophe</creator><creatorcontrib>Delbaen, Freddy ; Grandits, Peter ; Rheinländer, Thorsten ; Samperi, Dominick ; Schweizer, Martin ; Stricker, Christophe</creatorcontrib><description>We solve the problem of hedging a contingent claim B by maximizing the expected exponential utility of terminal net wealth for a locally bounded semimartingale X. We prove a duality relation between this problem and a dual problem for local martingale measures Q for X where we either minimize relative entropy minus a correction term involving B or maximize the Q‐price of B subject to an entropic penalty term. Our result is robust in the sense that it holds for several choices of the space of hedging strategies. Applications include a new characterization of the minimal martingale measure and risk‐averse asymptotics.</description><identifier>ISSN: 0960-1627</identifier><identifier>EISSN: 1467-9965</identifier><identifier>DOI: 10.1111/1467-9965.02001</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishers, Inc</publisher><subject>duality ; Entropy ; exponential utility ; Hedging ; Investment ; Mathematical models ; minimal entropy martingale measure ; minimal martingale measure ; relative entropy ; reverse Hölder inequalities ; Risk ; Studies ; Utility functions</subject><ispartof>Mathematical finance, 2002-04, Vol.12 (2), p.99-123</ispartof><rights>Copyright Blackwell Publishers Inc. Apr 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6161-5cd80201fd1aded6a966fe6f4ce6886fcb59971ade0ff5250662c09c46045a0c3</citedby><cites>FETCH-LOGICAL-c6161-5cd80201fd1aded6a966fe6f4ce6886fcb59971ade0ff5250662c09c46045a0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223,33224</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blamathfi/v_3a12_3ay_3a2002_3ai_3a2_3ap_3a99-123.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Delbaen, Freddy</creatorcontrib><creatorcontrib>Grandits, Peter</creatorcontrib><creatorcontrib>Rheinländer, Thorsten</creatorcontrib><creatorcontrib>Samperi, Dominick</creatorcontrib><creatorcontrib>Schweizer, Martin</creatorcontrib><creatorcontrib>Stricker, Christophe</creatorcontrib><title>Exponential Hedging and Entropic Penalties</title><title>Mathematical finance</title><description>We solve the problem of hedging a contingent claim B by maximizing the expected exponential utility of terminal net wealth for a locally bounded semimartingale X. We prove a duality relation between this problem and a dual problem for local martingale measures Q for X where we either minimize relative entropy minus a correction term involving B or maximize the Q‐price of B subject to an entropic penalty term. Our result is robust in the sense that it holds for several choices of the space of hedging strategies. Applications include a new characterization of the minimal martingale measure and risk‐averse asymptotics.</description><subject>duality</subject><subject>Entropy</subject><subject>exponential utility</subject><subject>Hedging</subject><subject>Investment</subject><subject>Mathematical models</subject><subject>minimal entropy martingale measure</subject><subject>minimal martingale measure</subject><subject>relative entropy</subject><subject>reverse Hölder inequalities</subject><subject>Risk</subject><subject>Studies</subject><subject>Utility functions</subject><issn>0960-1627</issn><issn>1467-9965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFUMtOwzAQtBBIlMeZa8SBA1KoncemPlZVWypePYCQuKyMY1OXNAl2Cu3f4xDUAxcsjb2yZ9azQ8gZo1fMrz5LIAs5h_SKRpSyPdLb3eyTHuVAQwZRdkiOnFtSSpMkyXrkcrypq1KVjRFFcK3yN1O-BaLMg3HZ2Ko2MpirUhSNUe6EHGhROHX6ex6Tp8n4cXQd3j5MZ6PhbSiBAQtTmQ-8A6ZzJnKVg-AAWoFOpILBALR8TTnP2jeqdRqlFCCSlMsEaJIKKuNjctH1rW31sVauwZVxUhWFKFW1dhhz6gfh4Innf4jLam29W4dR7CcceI4n9TuStJVzVmmsrVkJu0VGsQ0O25iwjQl_gvOKWaewqlZyR38txEo0C23wE2PBIr9tPbykLU1betQenCOLYlw0K98r7Xp9mUJt__sa74aT2a-HsNMZ16jNTifsO0IWZyk-30_x5Wb-OI9vGCbxN0x7lZc</recordid><startdate>200204</startdate><enddate>200204</enddate><creator>Delbaen, Freddy</creator><creator>Grandits, Peter</creator><creator>Rheinländer, Thorsten</creator><creator>Samperi, Dominick</creator><creator>Schweizer, Martin</creator><creator>Stricker, Christophe</creator><general>Blackwell Publishers, Inc</general><general>Wiley Blackwell</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>200204</creationdate><title>Exponential Hedging and Entropic Penalties</title><author>Delbaen, Freddy ; Grandits, Peter ; Rheinländer, Thorsten ; Samperi, Dominick ; Schweizer, Martin ; Stricker, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6161-5cd80201fd1aded6a966fe6f4ce6886fcb59971ade0ff5250662c09c46045a0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>duality</topic><topic>Entropy</topic><topic>exponential utility</topic><topic>Hedging</topic><topic>Investment</topic><topic>Mathematical models</topic><topic>minimal entropy martingale measure</topic><topic>minimal martingale measure</topic><topic>relative entropy</topic><topic>reverse Hölder inequalities</topic><topic>Risk</topic><topic>Studies</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delbaen, Freddy</creatorcontrib><creatorcontrib>Grandits, Peter</creatorcontrib><creatorcontrib>Rheinländer, Thorsten</creatorcontrib><creatorcontrib>Samperi, Dominick</creatorcontrib><creatorcontrib>Schweizer, Martin</creatorcontrib><creatorcontrib>Stricker, Christophe</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delbaen, Freddy</au><au>Grandits, Peter</au><au>Rheinländer, Thorsten</au><au>Samperi, Dominick</au><au>Schweizer, Martin</au><au>Stricker, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential Hedging and Entropic Penalties</atitle><jtitle>Mathematical finance</jtitle><date>2002-04</date><risdate>2002</risdate><volume>12</volume><issue>2</issue><spage>99</spage><epage>123</epage><pages>99-123</pages><issn>0960-1627</issn><eissn>1467-9965</eissn><abstract>We solve the problem of hedging a contingent claim B by maximizing the expected exponential utility of terminal net wealth for a locally bounded semimartingale X. We prove a duality relation between this problem and a dual problem for local martingale measures Q for X where we either minimize relative entropy minus a correction term involving B or maximize the Q‐price of B subject to an entropic penalty term. Our result is robust in the sense that it holds for several choices of the space of hedging strategies. Applications include a new characterization of the minimal martingale measure and risk‐averse asymptotics.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishers, Inc</pub><doi>10.1111/1467-9965.02001</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1627 |
ispartof | Mathematical finance, 2002-04, Vol.12 (2), p.99-123 |
issn | 0960-1627 1467-9965 |
language | eng |
recordid | cdi_proquest_miscellaneous_39016296 |
source | EconLit s plnými texty; International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; Wiley |
subjects | duality Entropy exponential utility Hedging Investment Mathematical models minimal entropy martingale measure minimal martingale measure relative entropy reverse Hölder inequalities Risk Studies Utility functions |
title | Exponential Hedging and Entropic Penalties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20Hedging%20and%20Entropic%20Penalties&rft.jtitle=Mathematical%20finance&rft.au=Delbaen,%20Freddy&rft.date=2002-04&rft.volume=12&rft.issue=2&rft.spage=99&rft.epage=123&rft.pages=99-123&rft.issn=0960-1627&rft.eissn=1467-9965&rft_id=info:doi/10.1111/1467-9965.02001&rft_dat=%3Cproquest_cross%3E113105024%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6161-5cd80201fd1aded6a966fe6f4ce6886fcb59971ade0ff5250662c09c46045a0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230008963&rft_id=info:pmid/&rfr_iscdi=true |