Loading…
Learning organizational roles for negotiated search in a multiagent system
This paper presents studies in learning a form of organizational knowledge called organizational roles in a multi-agent agent system. It attempts to demonstrate the viability and utility of self-organization in an agent-based system involving complex interactions within the agent set. We present a m...
Saved in:
Published in: | International journal of human-computer studies 1998-01, Vol.48 (1), p.51-67 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents studies in learning a form of organizational knowledge called organizational roles in a multi-agent agent system. It attempts to demonstrate the viability and utility of self-organization in an agent-based system involving complex interactions within the agent set. We present a multi-agent parametric design system called L-TEAM where a set of heterogeneous agents learn their organizational roles in negotiated search for mutually acceptable designs. We tested the system on a steam condenser design domain and empirically demonstrated its usefulness. L-TEAM produced better results than its non-learning predecessor, TEAM, which required elaborate knowledge engineering to hand-code organizational roles for its agent set. In addition, we discuss experiments with L-TEAM that highlight the importance of certain learning issues in multi-agent systems. |
---|---|
ISSN: | 1071-5819 1095-9300 |
DOI: | 10.1006/ijhc.1997.0160 |