Loading…

Learning organizational roles for negotiated search in a multiagent system

This paper presents studies in learning a form of organizational knowledge called organizational roles in a multi-agent agent system. It attempts to demonstrate the viability and utility of self-organization in an agent-based system involving complex interactions within the agent set. We present a m...

Full description

Saved in:
Bibliographic Details
Published in:International journal of human-computer studies 1998-01, Vol.48 (1), p.51-67
Main Authors: PRASAD, M.V.N., LESSER, VICTOR R., LANDER, SUSAN E.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-a04ce8c5d1dc5f692964ef76848dd00529cc5588a47c2f4ffebbad454800e30f3
cites
container_end_page 67
container_issue 1
container_start_page 51
container_title International journal of human-computer studies
container_volume 48
creator PRASAD, M.V.N.
LESSER, VICTOR R.
LANDER, SUSAN E.
description This paper presents studies in learning a form of organizational knowledge called organizational roles in a multi-agent agent system. It attempts to demonstrate the viability and utility of self-organization in an agent-based system involving complex interactions within the agent set. We present a multi-agent parametric design system called L-TEAM where a set of heterogeneous agents learn their organizational roles in negotiated search for mutually acceptable designs. We tested the system on a steam condenser design domain and empirically demonstrated its usefulness. L-TEAM produced better results than its non-learning predecessor, TEAM, which required elaborate knowledge engineering to hand-code organizational roles for its agent set. In addition, we discuss experiments with L-TEAM that highlight the importance of certain learning issues in multi-agent systems.
doi_str_mv 10.1006/ijhc.1997.0160
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57446375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1071581997901609</els_id><sourcerecordid>27545307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-a04ce8c5d1dc5f692964ef76848dd00529cc5588a47c2f4ffebbad454800e30f3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhiMEEuVjZfbElnBO7NgZUcWnKrHAbLnOOXWV2MVOkcqvJ1FZEdO9Oj3vSfdk2Q2FggLUd267MQVtGlEAreEkW1BoeN5UAKdzFjTnkjbn2UVKWwAQDGCRva5QR-98R0LstHffenTB657E0GMiNkTisQuj0yO2JE2w2RDniSbDvp-2HfqRpEMacbjKzqzuE17_zsvs4_Hhffmcr96eXpb3q9xUTI65BmZQGt7S1nBbN2VTM7Silky2LQAvG2M4l1IzYUrLrMX1WreMMwmAFdjqMrs93t3F8LnHNKrBJYN9rz2GfVJcMFZXgv8LloIzXoGYwOIImhhSimjVLrpBx4OioGa3anarZrdqdjsV5LGA059fDqNKxqE32LqIZlRtcH9VfwDCjIEb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27545307</pqid></control><display><type>article</type><title>Learning organizational roles for negotiated search in a multiagent system</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>ScienceDirect Freedom Collection</source><creator>PRASAD, M.V.N. ; LESSER, VICTOR R. ; LANDER, SUSAN E.</creator><creatorcontrib>PRASAD, M.V.N. ; LESSER, VICTOR R. ; LANDER, SUSAN E.</creatorcontrib><description>This paper presents studies in learning a form of organizational knowledge called organizational roles in a multi-agent agent system. It attempts to demonstrate the viability and utility of self-organization in an agent-based system involving complex interactions within the agent set. We present a multi-agent parametric design system called L-TEAM where a set of heterogeneous agents learn their organizational roles in negotiated search for mutually acceptable designs. We tested the system on a steam condenser design domain and empirically demonstrated its usefulness. L-TEAM produced better results than its non-learning predecessor, TEAM, which required elaborate knowledge engineering to hand-code organizational roles for its agent set. In addition, we discuss experiments with L-TEAM that highlight the importance of certain learning issues in multi-agent systems.</description><identifier>ISSN: 1071-5819</identifier><identifier>EISSN: 1095-9300</identifier><identifier>DOI: 10.1006/ijhc.1997.0160</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer applications ; Engineering ; Machine learning ; Multiagents ; Organizational roles</subject><ispartof>International journal of human-computer studies, 1998-01, Vol.48 (1), p.51-67</ispartof><rights>1998 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-a04ce8c5d1dc5f692964ef76848dd00529cc5588a47c2f4ffebbad454800e30f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34136</link.rule.ids></links><search><creatorcontrib>PRASAD, M.V.N.</creatorcontrib><creatorcontrib>LESSER, VICTOR R.</creatorcontrib><creatorcontrib>LANDER, SUSAN E.</creatorcontrib><title>Learning organizational roles for negotiated search in a multiagent system</title><title>International journal of human-computer studies</title><description>This paper presents studies in learning a form of organizational knowledge called organizational roles in a multi-agent agent system. It attempts to demonstrate the viability and utility of self-organization in an agent-based system involving complex interactions within the agent set. We present a multi-agent parametric design system called L-TEAM where a set of heterogeneous agents learn their organizational roles in negotiated search for mutually acceptable designs. We tested the system on a steam condenser design domain and empirically demonstrated its usefulness. L-TEAM produced better results than its non-learning predecessor, TEAM, which required elaborate knowledge engineering to hand-code organizational roles for its agent set. In addition, we discuss experiments with L-TEAM that highlight the importance of certain learning issues in multi-agent systems.</description><subject>Computer applications</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Multiagents</subject><subject>Organizational roles</subject><issn>1071-5819</issn><issn>1095-9300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNqFkD1PwzAQhiMEEuVjZfbElnBO7NgZUcWnKrHAbLnOOXWV2MVOkcqvJ1FZEdO9Oj3vSfdk2Q2FggLUd267MQVtGlEAreEkW1BoeN5UAKdzFjTnkjbn2UVKWwAQDGCRva5QR-98R0LstHffenTB657E0GMiNkTisQuj0yO2JE2w2RDniSbDvp-2HfqRpEMacbjKzqzuE17_zsvs4_Hhffmcr96eXpb3q9xUTI65BmZQGt7S1nBbN2VTM7Silky2LQAvG2M4l1IzYUrLrMX1WreMMwmAFdjqMrs93t3F8LnHNKrBJYN9rz2GfVJcMFZXgv8LloIzXoGYwOIImhhSimjVLrpBx4OioGa3anarZrdqdjsV5LGA059fDqNKxqE32LqIZlRtcH9VfwDCjIEb</recordid><startdate>199801</startdate><enddate>199801</enddate><creator>PRASAD, M.V.N.</creator><creator>LESSER, VICTOR R.</creator><creator>LANDER, SUSAN E.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>199801</creationdate><title>Learning organizational roles for negotiated search in a multiagent system</title><author>PRASAD, M.V.N. ; LESSER, VICTOR R. ; LANDER, SUSAN E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-a04ce8c5d1dc5f692964ef76848dd00529cc5588a47c2f4ffebbad454800e30f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Computer applications</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Multiagents</topic><topic>Organizational roles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PRASAD, M.V.N.</creatorcontrib><creatorcontrib>LESSER, VICTOR R.</creatorcontrib><creatorcontrib>LANDER, SUSAN E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>International journal of human-computer studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PRASAD, M.V.N.</au><au>LESSER, VICTOR R.</au><au>LANDER, SUSAN E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning organizational roles for negotiated search in a multiagent system</atitle><jtitle>International journal of human-computer studies</jtitle><date>1998-01</date><risdate>1998</risdate><volume>48</volume><issue>1</issue><spage>51</spage><epage>67</epage><pages>51-67</pages><issn>1071-5819</issn><eissn>1095-9300</eissn><abstract>This paper presents studies in learning a form of organizational knowledge called organizational roles in a multi-agent agent system. It attempts to demonstrate the viability and utility of self-organization in an agent-based system involving complex interactions within the agent set. We present a multi-agent parametric design system called L-TEAM where a set of heterogeneous agents learn their organizational roles in negotiated search for mutually acceptable designs. We tested the system on a steam condenser design domain and empirically demonstrated its usefulness. L-TEAM produced better results than its non-learning predecessor, TEAM, which required elaborate knowledge engineering to hand-code organizational roles for its agent set. In addition, we discuss experiments with L-TEAM that highlight the importance of certain learning issues in multi-agent systems.</abstract><pub>Elsevier Ltd</pub><doi>10.1006/ijhc.1997.0160</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1071-5819
ispartof International journal of human-computer studies, 1998-01, Vol.48 (1), p.51-67
issn 1071-5819
1095-9300
language eng
recordid cdi_proquest_miscellaneous_57446375
source Library & Information Science Abstracts (LISA); ScienceDirect Freedom Collection
subjects Computer applications
Engineering
Machine learning
Multiagents
Organizational roles
title Learning organizational roles for negotiated search in a multiagent system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20organizational%20roles%20for%20negotiated%20search%20in%20a%20multiagent%20system&rft.jtitle=International%20journal%20of%20human-computer%20studies&rft.au=PRASAD,%20M.V.N.&rft.date=1998-01&rft.volume=48&rft.issue=1&rft.spage=51&rft.epage=67&rft.pages=51-67&rft.issn=1071-5819&rft.eissn=1095-9300&rft_id=info:doi/10.1006/ijhc.1997.0160&rft_dat=%3Cproquest_cross%3E27545307%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-a04ce8c5d1dc5f692964ef76848dd00529cc5588a47c2f4ffebbad454800e30f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27545307&rft_id=info:pmid/&rfr_iscdi=true