Loading…
Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo
Bayesian statistics have made great strides in recent years, developing a class of methods for estimation and inference via stochastic simulation known as Markov Chain Monte Carlo (MCMC) methods. MCMC constitutes a revolution in statistical practice with effects beginning to be felt in the social sc...
Saved in:
Published in: | American journal of political science 2000-04, Vol.44 (2), p.375-404 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bayesian statistics have made great strides in recent years, developing a class of methods for estimation and inference via stochastic simulation known as Markov Chain Monte Carlo (MCMC) methods. MCMC constitutes a revolution in statistical practice with effects beginning to be felt in the social sciences: models long consigned to the "too hard" basket are now within reach of quantitative researchers. I review the statistical pedigree of MCMC and the underlying statistical concepts. I demonstrate some of the strengths and weaknesses of MCMC and offer practical suggestions for using MCMC in social-science settings. Simple, illustrative examples include a probit model of voter turnout and a linear regression for time-series data with autoregressive disturbances. I conclude with a more challenging application, a multinomial probit model, to showcase the power of MCMC methods. |
---|---|
ISSN: | 0092-5853 1540-5907 |
DOI: | 10.2307/2669318 |