Loading…
Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo
Bayesian statistics have made great strides in recent years, developing a class of methods for estimation and inference via stochastic simulation known as Markov Chain Monte Carlo (MCMC) methods. MCMC constitutes a revolution in statistical practice with effects beginning to be felt in the social sc...
Saved in:
Published in: | American journal of political science 2000-04, Vol.44 (2), p.375-404 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c435t-ea3b1156622c69c72b7c98cd26d3a3a57eaf01137d4aa150cd5db8c68c86e3013 |
---|---|
cites | |
container_end_page | 404 |
container_issue | 2 |
container_start_page | 375 |
container_title | American journal of political science |
container_volume | 44 |
creator | Jackman, Simon |
description | Bayesian statistics have made great strides in recent years, developing a class of methods for estimation and inference via stochastic simulation known as Markov Chain Monte Carlo (MCMC) methods. MCMC constitutes a revolution in statistical practice with effects beginning to be felt in the social sciences: models long consigned to the "too hard" basket are now within reach of quantitative researchers. I review the statistical pedigree of MCMC and the underlying statistical concepts. I demonstrate some of the strengths and weaknesses of MCMC and offer practical suggestions for using MCMC in social-science settings. Simple, illustrative examples include a probit model of voter turnout and a linear regression for time-series data with autoregressive disturbances. I conclude with a more challenging application, a multinomial probit model, to showcase the power of MCMC methods. |
doi_str_mv | 10.2307/2669318 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_60805642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2669318</jstor_id><sourcerecordid>2669318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-ea3b1156622c69c72b7c98cd26d3a3a57eaf01137d4aa150cd5db8c68c86e3013</originalsourceid><addsrcrecordid>eNqF0UtLAzEQAOAgCtYq_oWgoqfVPDYvb3WpD2jxoB5lSbMpbt0mNckW-u_dPk5C8TQMfDPDzABwjtEtoUjcEc4VxfIA9DDLUcYUEoegh5AiGZOMHoOTGGeoy3NFe-BzGFM916n2DmpXwRc3tcE6Y-Gy1vBBr2ystYNv9bxtNuoeDlynUvBVazZlycOxDt9-CYsvXTs49i5ZWOjQ-FNwNNVNtGe72Acfj8P34jkbvT69FINRZnLKUmY1nWDMOCfEcGUEmQijpKkIr6immgmrpwhjKqpca8yQqVg1kYZLI7mlCNM-uN72XQT_09qYynkdjW0a7axvY8mRRIzn5F9IpRSKK9XBiz9w5tvguiVKrLikhMr12Mu9KBc5VkIK1qmbrTLBxxjstFyE7uRhVWJUrl9W7l7WyautnMXkw172C3GkkYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1474197875</pqid></control><display><type>article</type><title>Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Worldwide Political Science Abstracts</source><creator>Jackman, Simon</creator><creatorcontrib>Jackman, Simon</creatorcontrib><description>Bayesian statistics have made great strides in recent years, developing a class of methods for estimation and inference via stochastic simulation known as Markov Chain Monte Carlo (MCMC) methods. MCMC constitutes a revolution in statistical practice with effects beginning to be felt in the social sciences: models long consigned to the "too hard" basket are now within reach of quantitative researchers. I review the statistical pedigree of MCMC and the underlying statistical concepts. I demonstrate some of the strengths and weaknesses of MCMC and offer practical suggestions for using MCMC in social-science settings. Simple, illustrative examples include a probit model of voter turnout and a linear regression for time-series data with autoregressive disturbances. I conclude with a more challenging application, a multinomial probit model, to showcase the power of MCMC methods.</description><identifier>ISSN: 0092-5853</identifier><identifier>EISSN: 1540-5907</identifier><identifier>DOI: 10.2307/2669318</identifier><identifier>CODEN: AJPLB4</identifier><language>eng</language><publisher>Austin, Tex: University of Wisconsin Press</publisher><subject>Bayesian method ; Data sampling ; Estimation ; Inference ; Linear models ; Markov analysis ; Markov chains ; Maximum likelihood estimation ; Methodology ; Metropolitan areas ; Missing data ; Modeling ; Monte Carlo simulation ; Parametric models ; Political science ; Quantitative analysis ; Railroad transportation ; Sampling distributions ; Simulation ; Simulation and Games ; Social Science ; Social sciences ; Statistical variance ; Statistics ; Stochastic models ; Time series ; Workshops</subject><ispartof>American journal of political science, 2000-04, Vol.44 (2), p.375-404</ispartof><rights>Copyright 2000 Midwest Political Science Association</rights><rights>Copyright University of Wisconsin Press Apr 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-ea3b1156622c69c72b7c98cd26d3a3a57eaf01137d4aa150cd5db8c68c86e3013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2669318$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2669318$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,33222,33223,58237,58470</link.rule.ids></links><search><creatorcontrib>Jackman, Simon</creatorcontrib><title>Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo</title><title>American journal of political science</title><description>Bayesian statistics have made great strides in recent years, developing a class of methods for estimation and inference via stochastic simulation known as Markov Chain Monte Carlo (MCMC) methods. MCMC constitutes a revolution in statistical practice with effects beginning to be felt in the social sciences: models long consigned to the "too hard" basket are now within reach of quantitative researchers. I review the statistical pedigree of MCMC and the underlying statistical concepts. I demonstrate some of the strengths and weaknesses of MCMC and offer practical suggestions for using MCMC in social-science settings. Simple, illustrative examples include a probit model of voter turnout and a linear regression for time-series data with autoregressive disturbances. I conclude with a more challenging application, a multinomial probit model, to showcase the power of MCMC methods.</description><subject>Bayesian method</subject><subject>Data sampling</subject><subject>Estimation</subject><subject>Inference</subject><subject>Linear models</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Maximum likelihood estimation</subject><subject>Methodology</subject><subject>Metropolitan areas</subject><subject>Missing data</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>Parametric models</subject><subject>Political science</subject><subject>Quantitative analysis</subject><subject>Railroad transportation</subject><subject>Sampling distributions</subject><subject>Simulation</subject><subject>Simulation and Games</subject><subject>Social Science</subject><subject>Social sciences</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Stochastic models</subject><subject>Time series</subject><subject>Workshops</subject><issn>0092-5853</issn><issn>1540-5907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><sourceid>8BJ</sourceid><recordid>eNqF0UtLAzEQAOAgCtYq_oWgoqfVPDYvb3WpD2jxoB5lSbMpbt0mNckW-u_dPk5C8TQMfDPDzABwjtEtoUjcEc4VxfIA9DDLUcYUEoegh5AiGZOMHoOTGGeoy3NFe-BzGFM916n2DmpXwRc3tcE6Y-Gy1vBBr2ystYNv9bxtNuoeDlynUvBVazZlycOxDt9-CYsvXTs49i5ZWOjQ-FNwNNVNtGe72Acfj8P34jkbvT69FINRZnLKUmY1nWDMOCfEcGUEmQijpKkIr6immgmrpwhjKqpca8yQqVg1kYZLI7mlCNM-uN72XQT_09qYynkdjW0a7axvY8mRRIzn5F9IpRSKK9XBiz9w5tvguiVKrLikhMr12Mu9KBc5VkIK1qmbrTLBxxjstFyE7uRhVWJUrl9W7l7WyautnMXkw172C3GkkYM</recordid><startdate>20000401</startdate><enddate>20000401</enddate><creator>Jackman, Simon</creator><general>University of Wisconsin Press</general><general>University of Texas Press for Midwest Political Science Association, etc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>FYSDU</scope><scope>GHEHK</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7UB</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20000401</creationdate><title>Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo</title><author>Jackman, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-ea3b1156622c69c72b7c98cd26d3a3a57eaf01137d4aa150cd5db8c68c86e3013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bayesian method</topic><topic>Data sampling</topic><topic>Estimation</topic><topic>Inference</topic><topic>Linear models</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Maximum likelihood estimation</topic><topic>Methodology</topic><topic>Metropolitan areas</topic><topic>Missing data</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>Parametric models</topic><topic>Political science</topic><topic>Quantitative analysis</topic><topic>Railroad transportation</topic><topic>Sampling distributions</topic><topic>Simulation</topic><topic>Simulation and Games</topic><topic>Social Science</topic><topic>Social sciences</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Stochastic models</topic><topic>Time series</topic><topic>Workshops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackman, Simon</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 07</collection><collection>Periodicals Index Online Segment 08</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Worldwide Political Science Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>American journal of political science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackman, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo</atitle><jtitle>American journal of political science</jtitle><date>2000-04-01</date><risdate>2000</risdate><volume>44</volume><issue>2</issue><spage>375</spage><epage>404</epage><pages>375-404</pages><issn>0092-5853</issn><eissn>1540-5907</eissn><coden>AJPLB4</coden><abstract>Bayesian statistics have made great strides in recent years, developing a class of methods for estimation and inference via stochastic simulation known as Markov Chain Monte Carlo (MCMC) methods. MCMC constitutes a revolution in statistical practice with effects beginning to be felt in the social sciences: models long consigned to the "too hard" basket are now within reach of quantitative researchers. I review the statistical pedigree of MCMC and the underlying statistical concepts. I demonstrate some of the strengths and weaknesses of MCMC and offer practical suggestions for using MCMC in social-science settings. Simple, illustrative examples include a probit model of voter turnout and a linear regression for time-series data with autoregressive disturbances. I conclude with a more challenging application, a multinomial probit model, to showcase the power of MCMC methods.</abstract><cop>Austin, Tex</cop><pub>University of Wisconsin Press</pub><doi>10.2307/2669318</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-5853 |
ispartof | American journal of political science, 2000-04, Vol.44 (2), p.375-404 |
issn | 0092-5853 1540-5907 |
language | eng |
recordid | cdi_proquest_miscellaneous_60805642 |
source | International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; Worldwide Political Science Abstracts |
subjects | Bayesian method Data sampling Estimation Inference Linear models Markov analysis Markov chains Maximum likelihood estimation Methodology Metropolitan areas Missing data Modeling Monte Carlo simulation Parametric models Political science Quantitative analysis Railroad transportation Sampling distributions Simulation Simulation and Games Social Science Social sciences Statistical variance Statistics Stochastic models Time series Workshops |
title | Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20and%20Inference%20via%20Bayesian%20Simulation:%20An%20Introduction%20to%20Markov%20Chain%20Monte%20Carlo&rft.jtitle=American%20journal%20of%20political%20science&rft.au=Jackman,%20Simon&rft.date=2000-04-01&rft.volume=44&rft.issue=2&rft.spage=375&rft.epage=404&rft.pages=375-404&rft.issn=0092-5853&rft.eissn=1540-5907&rft.coden=AJPLB4&rft_id=info:doi/10.2307/2669318&rft_dat=%3Cjstor_proqu%3E2669318%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-ea3b1156622c69c72b7c98cd26d3a3a57eaf01137d4aa150cd5db8c68c86e3013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1474197875&rft_id=info:pmid/&rft_jstor_id=2669318&rfr_iscdi=true |