Loading…

Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo

Bayesian statistics have made great strides in recent years, developing a class of methods for estimation and inference via stochastic simulation known as Markov Chain Monte Carlo (MCMC) methods. MCMC constitutes a revolution in statistical practice with effects beginning to be felt in the social sc...

Full description

Saved in:
Bibliographic Details
Published in:American journal of political science 2000-04, Vol.44 (2), p.375-404
Main Author: Jackman, Simon
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c435t-ea3b1156622c69c72b7c98cd26d3a3a57eaf01137d4aa150cd5db8c68c86e3013
cites
container_end_page 404
container_issue 2
container_start_page 375
container_title American journal of political science
container_volume 44
creator Jackman, Simon
description Bayesian statistics have made great strides in recent years, developing a class of methods for estimation and inference via stochastic simulation known as Markov Chain Monte Carlo (MCMC) methods. MCMC constitutes a revolution in statistical practice with effects beginning to be felt in the social sciences: models long consigned to the "too hard" basket are now within reach of quantitative researchers. I review the statistical pedigree of MCMC and the underlying statistical concepts. I demonstrate some of the strengths and weaknesses of MCMC and offer practical suggestions for using MCMC in social-science settings. Simple, illustrative examples include a probit model of voter turnout and a linear regression for time-series data with autoregressive disturbances. I conclude with a more challenging application, a multinomial probit model, to showcase the power of MCMC methods.
doi_str_mv 10.2307/2669318
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_60805642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2669318</jstor_id><sourcerecordid>2669318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-ea3b1156622c69c72b7c98cd26d3a3a57eaf01137d4aa150cd5db8c68c86e3013</originalsourceid><addsrcrecordid>eNqF0UtLAzEQAOAgCtYq_oWgoqfVPDYvb3WpD2jxoB5lSbMpbt0mNckW-u_dPk5C8TQMfDPDzABwjtEtoUjcEc4VxfIA9DDLUcYUEoegh5AiGZOMHoOTGGeoy3NFe-BzGFM916n2DmpXwRc3tcE6Y-Gy1vBBr2ystYNv9bxtNuoeDlynUvBVazZlycOxDt9-CYsvXTs49i5ZWOjQ-FNwNNVNtGe72Acfj8P34jkbvT69FINRZnLKUmY1nWDMOCfEcGUEmQijpKkIr6immgmrpwhjKqpca8yQqVg1kYZLI7mlCNM-uN72XQT_09qYynkdjW0a7axvY8mRRIzn5F9IpRSKK9XBiz9w5tvguiVKrLikhMr12Mu9KBc5VkIK1qmbrTLBxxjstFyE7uRhVWJUrl9W7l7WyautnMXkw172C3GkkYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1474197875</pqid></control><display><type>article</type><title>Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Worldwide Political Science Abstracts</source><creator>Jackman, Simon</creator><creatorcontrib>Jackman, Simon</creatorcontrib><description>Bayesian statistics have made great strides in recent years, developing a class of methods for estimation and inference via stochastic simulation known as Markov Chain Monte Carlo (MCMC) methods. MCMC constitutes a revolution in statistical practice with effects beginning to be felt in the social sciences: models long consigned to the "too hard" basket are now within reach of quantitative researchers. I review the statistical pedigree of MCMC and the underlying statistical concepts. I demonstrate some of the strengths and weaknesses of MCMC and offer practical suggestions for using MCMC in social-science settings. Simple, illustrative examples include a probit model of voter turnout and a linear regression for time-series data with autoregressive disturbances. I conclude with a more challenging application, a multinomial probit model, to showcase the power of MCMC methods.</description><identifier>ISSN: 0092-5853</identifier><identifier>EISSN: 1540-5907</identifier><identifier>DOI: 10.2307/2669318</identifier><identifier>CODEN: AJPLB4</identifier><language>eng</language><publisher>Austin, Tex: University of Wisconsin Press</publisher><subject>Bayesian method ; Data sampling ; Estimation ; Inference ; Linear models ; Markov analysis ; Markov chains ; Maximum likelihood estimation ; Methodology ; Metropolitan areas ; Missing data ; Modeling ; Monte Carlo simulation ; Parametric models ; Political science ; Quantitative analysis ; Railroad transportation ; Sampling distributions ; Simulation ; Simulation and Games ; Social Science ; Social sciences ; Statistical variance ; Statistics ; Stochastic models ; Time series ; Workshops</subject><ispartof>American journal of political science, 2000-04, Vol.44 (2), p.375-404</ispartof><rights>Copyright 2000 Midwest Political Science Association</rights><rights>Copyright University of Wisconsin Press Apr 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-ea3b1156622c69c72b7c98cd26d3a3a57eaf01137d4aa150cd5db8c68c86e3013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2669318$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2669318$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,33222,33223,58237,58470</link.rule.ids></links><search><creatorcontrib>Jackman, Simon</creatorcontrib><title>Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo</title><title>American journal of political science</title><description>Bayesian statistics have made great strides in recent years, developing a class of methods for estimation and inference via stochastic simulation known as Markov Chain Monte Carlo (MCMC) methods. MCMC constitutes a revolution in statistical practice with effects beginning to be felt in the social sciences: models long consigned to the "too hard" basket are now within reach of quantitative researchers. I review the statistical pedigree of MCMC and the underlying statistical concepts. I demonstrate some of the strengths and weaknesses of MCMC and offer practical suggestions for using MCMC in social-science settings. Simple, illustrative examples include a probit model of voter turnout and a linear regression for time-series data with autoregressive disturbances. I conclude with a more challenging application, a multinomial probit model, to showcase the power of MCMC methods.</description><subject>Bayesian method</subject><subject>Data sampling</subject><subject>Estimation</subject><subject>Inference</subject><subject>Linear models</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Maximum likelihood estimation</subject><subject>Methodology</subject><subject>Metropolitan areas</subject><subject>Missing data</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>Parametric models</subject><subject>Political science</subject><subject>Quantitative analysis</subject><subject>Railroad transportation</subject><subject>Sampling distributions</subject><subject>Simulation</subject><subject>Simulation and Games</subject><subject>Social Science</subject><subject>Social sciences</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Stochastic models</subject><subject>Time series</subject><subject>Workshops</subject><issn>0092-5853</issn><issn>1540-5907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><sourceid>8BJ</sourceid><recordid>eNqF0UtLAzEQAOAgCtYq_oWgoqfVPDYvb3WpD2jxoB5lSbMpbt0mNckW-u_dPk5C8TQMfDPDzABwjtEtoUjcEc4VxfIA9DDLUcYUEoegh5AiGZOMHoOTGGeoy3NFe-BzGFM916n2DmpXwRc3tcE6Y-Gy1vBBr2ystYNv9bxtNuoeDlynUvBVazZlycOxDt9-CYsvXTs49i5ZWOjQ-FNwNNVNtGe72Acfj8P34jkbvT69FINRZnLKUmY1nWDMOCfEcGUEmQijpKkIr6immgmrpwhjKqpca8yQqVg1kYZLI7mlCNM-uN72XQT_09qYynkdjW0a7axvY8mRRIzn5F9IpRSKK9XBiz9w5tvguiVKrLikhMr12Mu9KBc5VkIK1qmbrTLBxxjstFyE7uRhVWJUrl9W7l7WyautnMXkw172C3GkkYM</recordid><startdate>20000401</startdate><enddate>20000401</enddate><creator>Jackman, Simon</creator><general>University of Wisconsin Press</general><general>University of Texas Press for Midwest Political Science Association, etc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>FYSDU</scope><scope>GHEHK</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7UB</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20000401</creationdate><title>Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo</title><author>Jackman, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-ea3b1156622c69c72b7c98cd26d3a3a57eaf01137d4aa150cd5db8c68c86e3013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bayesian method</topic><topic>Data sampling</topic><topic>Estimation</topic><topic>Inference</topic><topic>Linear models</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Maximum likelihood estimation</topic><topic>Methodology</topic><topic>Metropolitan areas</topic><topic>Missing data</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>Parametric models</topic><topic>Political science</topic><topic>Quantitative analysis</topic><topic>Railroad transportation</topic><topic>Sampling distributions</topic><topic>Simulation</topic><topic>Simulation and Games</topic><topic>Social Science</topic><topic>Social sciences</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Stochastic models</topic><topic>Time series</topic><topic>Workshops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackman, Simon</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 07</collection><collection>Periodicals Index Online Segment 08</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Worldwide Political Science Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>American journal of political science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackman, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo</atitle><jtitle>American journal of political science</jtitle><date>2000-04-01</date><risdate>2000</risdate><volume>44</volume><issue>2</issue><spage>375</spage><epage>404</epage><pages>375-404</pages><issn>0092-5853</issn><eissn>1540-5907</eissn><coden>AJPLB4</coden><abstract>Bayesian statistics have made great strides in recent years, developing a class of methods for estimation and inference via stochastic simulation known as Markov Chain Monte Carlo (MCMC) methods. MCMC constitutes a revolution in statistical practice with effects beginning to be felt in the social sciences: models long consigned to the "too hard" basket are now within reach of quantitative researchers. I review the statistical pedigree of MCMC and the underlying statistical concepts. I demonstrate some of the strengths and weaknesses of MCMC and offer practical suggestions for using MCMC in social-science settings. Simple, illustrative examples include a probit model of voter turnout and a linear regression for time-series data with autoregressive disturbances. I conclude with a more challenging application, a multinomial probit model, to showcase the power of MCMC methods.</abstract><cop>Austin, Tex</cop><pub>University of Wisconsin Press</pub><doi>10.2307/2669318</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0092-5853
ispartof American journal of political science, 2000-04, Vol.44 (2), p.375-404
issn 0092-5853
1540-5907
language eng
recordid cdi_proquest_miscellaneous_60805642
source International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; Worldwide Political Science Abstracts
subjects Bayesian method
Data sampling
Estimation
Inference
Linear models
Markov analysis
Markov chains
Maximum likelihood estimation
Methodology
Metropolitan areas
Missing data
Modeling
Monte Carlo simulation
Parametric models
Political science
Quantitative analysis
Railroad transportation
Sampling distributions
Simulation
Simulation and Games
Social Science
Social sciences
Statistical variance
Statistics
Stochastic models
Time series
Workshops
title Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20and%20Inference%20via%20Bayesian%20Simulation:%20An%20Introduction%20to%20Markov%20Chain%20Monte%20Carlo&rft.jtitle=American%20journal%20of%20political%20science&rft.au=Jackman,%20Simon&rft.date=2000-04-01&rft.volume=44&rft.issue=2&rft.spage=375&rft.epage=404&rft.pages=375-404&rft.issn=0092-5853&rft.eissn=1540-5907&rft.coden=AJPLB4&rft_id=info:doi/10.2307/2669318&rft_dat=%3Cjstor_proqu%3E2669318%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-ea3b1156622c69c72b7c98cd26d3a3a57eaf01137d4aa150cd5db8c68c86e3013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1474197875&rft_id=info:pmid/&rft_jstor_id=2669318&rfr_iscdi=true