Loading…

Immunoneutralization of Growth Differentiation Factor 9 Reveals It Partially Accounts for Mouse Oocyte Mitogenic Activity

Paracrine factors secreted by oocytes play a pivotal role in promoting early ovarian follicle growth and in defining a morphogenic gradient in antral follicles, yet the exact identities of these oocyte factors remain unknown. This study was conducted to determine the extent to which the mitogenic ac...

Full description

Saved in:
Bibliographic Details
Published in:Biology of reproduction 2004-09, Vol.71 (3), p.732-739
Main Authors: GILCHRIST, R. B, RITTER, L. J, GROOME, N. P, RITVOS, O, CRANFIELD, M, JEFFERY, L. A, AMATO, F, SCOTT, S. J, MYLLYMAA, S, KAIVO-OJA, N, LANKINEN, H, MOTTERSHEAD, D. G
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Paracrine factors secreted by oocytes play a pivotal role in promoting early ovarian follicle growth and in defining a morphogenic gradient in antral follicles, yet the exact identities of these oocyte factors remain unknown. This study was conducted to determine the extent to which the mitogenic activity of mouse oocytes can be attributed to growth differentiation factor 9 (GDF9). To do this, specific anti-human GDF9 monoclonal antibodies were generated. Based on epitope mapping and bioassays, a GDF9 neutralizing antibody, mAb-GDF9-53, was characterized with very low cross-reactivity with related transforming growth factor (TGF)β superfamily members, including BMP15 (also called GDF9B). Pep-SPOT epitope mapping showed that mAb-GDF9-53 recognizes a short 4-aa sequence, and three-dimensional peptide modeling suggested that this binding motif lies at the C-terminal fingertip of mGDF9. As predicted by sequence alignments and modeling, the antibody detected recombinant GDF9, but not BMP15 in a Western blot and GDF9 protein in oocyte extract and oocyte-conditioned medium. In a mouse mural granulosa cell (MGC) bioassay, mAb-GDF9-53 completely abolished the mitogenic effects of GDF9, but had no effect on TGFβ1 or activin A-stimulated MGC proliferation. An unrelated IgG at the same dose had no effect on GDF9 activity. This GDF9 neutralizing antibody was then tested in an established oocyte-secreted mitogen bioassay, where denuded oocytes cocultured with granulosa cells promote cell proliferation in a dose-dependent manner. The mAb-GDF9-53 dose dependently (0–160 μg/ml) decreased the mitogenic activity of oocytes but only by ∼45% at the maximum dose of mAb. Just 5 μg/ml of mAb-GDF9-53 neutralized 90% of recombinant mGDF9 mitogenic activity, but only 15% of oocyte activity. Unlike mAb-GDF9-53, a TGFβ pan-specific neutralizing antibody did not affect the mitogenic capacity of the oocyte, but completely neutralized TGFβ1-induced DNA synthesis. This study has characterized a specific GDF9 neutralizing antibody. Our data provide the first direct evidence that the endogenous GDF9 protein is an important oocyte-secreted mitogen, but also show that GDF9 accounts for only part of total oocyte bioactivity.
ISSN:0006-3363
1529-7268
DOI:10.1095/biolreprod.104.028852