Loading…

Program of Cell Survival Underlying Human and Experimental Hibernating Myocardium

Hibernating myocardium refers to chronically dysfunctional myocardium in patients with coronary artery disease in which cardiac viability is maintained and whose function improves after coronary revascularization. It is our hypothesis that long-term adaptive genomic mechanisms subtend the survival c...

Full description

Saved in:
Bibliographic Details
Published in:Circulation Research 2004-08, Vol.95 (4), p.433-440
Main Authors: Depre, Christophe, Kim, Song-Jung, John, Anna S, Huang, Yanhong, Rimoldi, Ornella E, Pepper, John R, Dreyfus, Gilles D, Gaussin, Vinciane, Pennell, Dudley J, Vatner, Dorothy E, Camici, Paolo G, Vatner, Stephen F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hibernating myocardium refers to chronically dysfunctional myocardium in patients with coronary artery disease in which cardiac viability is maintained and whose function improves after coronary revascularization. It is our hypothesis that long-term adaptive genomic mechanisms subtend the survival capacity of this ischemic myocardium. Therefore, the goal of this study was to determine whether chronic repetitive ischemia elicits a gene program of survival protecting hibernating myocardium against cell death. Accordingly, we measured the expression of survival genes in hibernating myocardium, both in patients surgically treated for hibernation and in a chronic swine model of repetitive ischemia reproducing the features of hibernation. Human hibernating myocardium was characterized by an upregulation of genes and corresponding proteins involved in anti-apoptosis (IAP), growth (VEGF, H11 kinase), and cytoprotection (HSP70, HIF-1α, GLUT1). In the swine model, the same genes and proteins were upregulated after repetitive ischemia, which was accompanied by a concomitant decrease in myocyte apoptosis. These changes characterize viable tissue, because they were not found in irreversibly injured myocardium. Our report demonstrates a novel mechanism by which the activation of an endogenous gene program of cell survival underlies the sustained viability of the hibernating heart. Potentially, promoting such a program offers a novel opportunity to salvage postmitotic tissues in conditions of ischemia.
ISSN:0009-7330
1524-4571
1524-4539
DOI:10.1161/01.RES.0000138301.42713.18