Loading…
Focal adhesion-localization of START-GAP1/DLC1 is essential for cell motility and morphology
There is a class of GTPase activating proteins for the Rho family GTPases (RhoGAPs) that contain the steroidogenic acute regulatory protein (STAR)-related lipid transfer (START) domain. In mammals three genes encode such proteins and they are designated START-GAP1-3 or deleted in liver cancer 1-3 (D...
Saved in:
Published in: | Genes to cells : devoted to molecular & cellular mechanisms 2009-02, Vol.14 (2), p.227-241 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There is a class of GTPase activating proteins for the Rho family GTPases (RhoGAPs) that contain the steroidogenic acute regulatory protein (STAR)-related lipid transfer (START) domain. In mammals three genes encode such proteins and they are designated START-GAP1-3 or deleted in liver cancer 1-3 (DLC1-3). In this study, we examined the intracellular localization and roles of START-GAP1/DLC1 in cell motility. Immunofluorescence microscopic analysis of NRK cells and HeLa cells revealed that START-GAP1 was localized in focal adhesions. Amino acid residues 265-459 of START-GAP1 were found to be necessary for focal adhesion targeting and we name the region "the focal adhesion-targeting (FAT) domain." It was previously known that ectopic expression of START-GAP1 induced cell rounding. We demonstrated that the FAT domain of START-GAP1 was partially required for this morphological change. Furthermore, expression of this domain in HeLa cells resulted in dissociation of endogenous START-GAP1 from focal adhesions as a dominant negative modulator, reducing cell migration and spreading. Taken together, START-GAP1 is targeted to focal adhesions via the FAT domain and regulates actin rearrangement through down-regulation of active RhoA and Cdc42. Its absence from focal adhesions could, therefore, cause abnormal cell motility and spreading. |
---|---|
ISSN: | 1356-9597 1365-2443 |
DOI: | 10.1111/j.1365-2443.2008.01265.x |