Loading…
Temperature dependence of the structure of Langmuir films of normal-alkanes on liquid mercury
The temperature dependent phase behavior of Langmuir films of n-alkanes [CH3(CH2)(n-2)CH3, denote Cn] on mercury was studied for chain lengths 19< or =n< or =22 and temperatures 15< or =T< or =44 degrees C, using surface tensiometry and surface x-ray diffraction methods. In contrast with...
Saved in:
Published in: | The Journal of chemical physics 2004-10, Vol.121 (16), p.8003-8009 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The temperature dependent phase behavior of Langmuir films of n-alkanes [CH3(CH2)(n-2)CH3, denote Cn] on mercury was studied for chain lengths 19< or =n< or =22 and temperatures 15< or =T< or =44 degrees C, using surface tensiometry and surface x-ray diffraction methods. In contrast with Langmuir films on water, where molecules invariably orient roughly surface normal, alkanes on mercury are always oriented surface parallel and show no long-range in-plane order at any surface pressure. A gas and several condensed phases of single, double, and triple layers of lying-down molecules are found, depending on n and T. At high coverages, the alkanes studied here show transitions from a triple to a double to a single layer with increasing temperature. The transition temperature from a double to a single layer is found to be approximately 5 degrees C, lower than the bulk rotator-to-liquid melting temperature, while the transition from a triple to a double layer is about as much below the double-to-single layer transition. Both monolayer and bulk transition temperatures show a linear increase with n with identical slopes of approximately 4.5 degrees C/CH2 within the range of n values addressed here. It is suggested that the film and bulk transitions are both driven by a common cause: the proliferation of gauche defects in the chain with increasing temperature. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.1799993 |