Loading…
Hematoporphyrin monomethyl ether photodynamic damage on HeLa cells by means of reactive oxygen species production and cytosolic free calcium concentration elevation
Hematoporphyrin monomethyl ether (HMME) is a novel and promising porphyrin-related photosensitizer for photodynamic therapy (PDT). HMME-PDT-induced cell death and its mechanisms were investigated in HeLa cells. We demonstrated that HMME-PDT could induce cell death through both necrosis and apoptosis...
Saved in:
Published in: | Cancer letters 2004-12, Vol.216 (1), p.43-54 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hematoporphyrin monomethyl ether (HMME) is a novel and promising porphyrin-related photosensitizer for photodynamic therapy (PDT). HMME-PDT-induced cell death and its mechanisms were investigated in HeLa cells. We demonstrated that HMME-PDT could induce cell death through both necrosis and apoptosis. Sodium azide (the singlet oxygen quencher) or
d-mannitol (the hydroxyl radical scavenger) could protect HeLa cells from the apoptosis and necrosis induced by HMME-PDT, showing that reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radical, played a decisive role in HMME-PDT-induced HeLa cells death. Sodium azide or
d-mannitol also inhibited HMME-PDT-mediated [Ca
2+]
i elevation. Cytochrome C (Cyto C) release from mitochondria into cytosol and Caspase-3 activation after HMME-PDT were inhibited by BAPTA/AM (an intracellular calcium chelator). These results demonstrated that ROS generated in HeLa cells by HMME-PDT-induced apoptosis may be through [Ca
2+]
i elevation which mediates Cyto C release and Caspase-3 activition and initiates the subsequent late stages of apoptosis. |
---|---|
ISSN: | 0304-3835 1872-7980 |
DOI: | 10.1016/j.canlet.2004.07.005 |