Loading…

Tissue-specific effect of estradiol on endothelial cell-dependent lymphocyte recruitment

Estrogen profoundly affects onset and severity of many immune-mediated diseases. In our murine model of drug-induced autoimmunity, female-specific, estrogen-dependent increase in splenic lymphocyte homing was directly implicated in increased disease severity. The present study evaluated the effect o...

Full description

Saved in:
Bibliographic Details
Published in:Microvascular research 2004-11, Vol.68 (3), p.273-285
Main Authors: Murphy, Hedwig S., Sun, Quan, Murphy, Brian A., Mo, RuRan, Huo, Jirong, Chen, Jun, Chensue, Stephen W., Adams, Matthew, Richardson, Bruce C., Yung, Raymond
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Estrogen profoundly affects onset and severity of many immune-mediated diseases. In our murine model of drug-induced autoimmunity, female-specific, estrogen-dependent increase in splenic lymphocyte homing was directly implicated in increased disease severity. The present study evaluated the effect of estradiol on microvascular endothelial cells from the spleen compared to endothelial cells from the dermis, which has no disease manifestation in this model. Estradiol increased spleen endothelial cell estrogen receptor (ER) alpha 2.9-fold and decreased estrogen receptor beta 2.1-fold while decreasing both receptors on dermal cells. Estradiol enhanced adhesion of D10 cells to spleen but not dermal endothelial cells 1.53-fold ( P < 0.001), an increase that was inhibited by antibodies to VCAM-1 and ICAM-1, and by the estrogen receptor antagonists tamoxifen and ICI 182,780. Estradiol induced greater VCAM-1 expression on spleen than dermal endothelial cells ( P < 0.05). Estradiol increased spleen endothelial cell estrogen receptor alpha 2.9-fold and decreased estrogen receptor beta 2.1-fold while decreasing both receptors on the dermal cells. Estrogen specifically and preferentially promoted spleen chemokine protein expression for MCP-1 and MCP-3, while having no effect on dermal protein expression for these chemokines. Estradiol-mediated effects on splenic chemokines were abrogated by tamoxifen and ICI 182,780. The gender-specific increase in lymphocyte homing to spleen may be attributable, at least in part, to tissue-specific estrogen-mediated effects on microvascular endothelial cells.
ISSN:0026-2862
1095-9319
DOI:10.1016/j.mvr.2004.06.004