Loading…
Automated procedure for candidate compound selection in GC-MS metabolomics based on prediction of Kovats retention index
Motivation: Matching both the retention index (RI) and the mass spectrum of an unknown compound against a mass spectral reference library provides strong evidence for a correct identification of that compound. Data on retention indices are, however, available for only a small fraction of the compoun...
Saved in:
Published in: | Bioinformatics 2009-03, Vol.25 (6), p.787-794 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Motivation: Matching both the retention index (RI) and the mass spectrum of an unknown compound against a mass spectral reference library provides strong evidence for a correct identification of that compound. Data on retention indices are, however, available for only a small fraction of the compounds in such libraries. We propose a quantitative structure-RI model that enables the ranking and filtering of putative identifications of compounds for which the predicted RI falls outside a predefined window. Results: We constructed multiple linear regression and support vector regression (SVR) models using a set of descriptors obtained with a genetic algorithm as variable selection method. The SVR model is a significant improvement over previous models built for structurally diverse compounds as it covers a large range (360–4100) of RI values and gives better prediction of isomer compounds. The hit list reduction varied from 41% to 60% and depended on the size of the original hit list. Large hit lists were reduced to a greater extend compared with small hit lists. Availability: http://appliedbioinformatics.wur.nl/GC-MS Contact: roeland.vanham@wur.nl Supplementary information: Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btp056 |