Loading…
Discrete synaptic states define a major mechanism of synapse plasticity
Synapses can change their strength in response to afferent activity, a property that might underlie a variety of neural processes such as learning, network synaptic weighting, synapse formation and pruning. Recent work has shown that synapses change their strength by jumping between discrete mechani...
Saved in:
Published in: | Trends in neurosciences (Regular ed.) 2004-12, Vol.27 (12), p.744-750 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c506t-ad1e105d1352ac3d9c18ab7e620e49601a85667d05844ed305a0eb3db18b1073 |
---|---|
cites | cdi_FETCH-LOGICAL-c506t-ad1e105d1352ac3d9c18ab7e620e49601a85667d05844ed305a0eb3db18b1073 |
container_end_page | 750 |
container_issue | 12 |
container_start_page | 744 |
container_title | Trends in neurosciences (Regular ed.) |
container_volume | 27 |
creator | Montgomery, Johanna M. Madison, Daniel V. |
description | Synapses can change their strength in response to afferent activity, a property that might underlie a variety of neural processes such as learning, network synaptic weighting, synapse formation and pruning. Recent work has shown that synapses change their strength by jumping between discrete mechanistic states, rather than by simply moving up and down in a continuum of efficacy. Coincident with this, studies have provided a framework for understanding the potential mechanistic underpinnings of synaptic plastic states. Synaptic plasticity states not only represent a new and fundamental property of CNS synapses, but also can provide a context for understanding outstanding issues in synaptic function, plasticity and development. |
doi_str_mv | 10.1016/j.tins.2004.10.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67073608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166223604003340</els_id><sourcerecordid>67073608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-ad1e105d1352ac3d9c18ab7e620e49601a85667d05844ed305a0eb3db18b1073</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxYMo7rj6BTxII-itx6qkk06Dl2XVVVjwsgdvIZ1UY5r-MyYZYb69aWZgwYOeAsXvVV69x9hrhD0Cqg_jPocl7TlAUwZ7APWE7VC3ukbQP56yXYFUzblQV-xFSiMANhqb5-wKpWxQotyxu08huUiZqnRa7CEHV6VsM6XK0xAWqmw123GN1Uzup11Cmqt1OLOJqsNkU5GEfHrJng12SvTq8l6zhy-fH26_1vff777d3tzXToLKtfVICNKjkNw64TuH2vYtKQ7UdArQaqlU60HqpiEvQFqgXvgedY_Qimv2_rz2ENdfR0rZzMU_TZNdaD0mo9oCKdD_BbFtO2glL-Dbv8BxPcal3GB4yVIILrZv-RlycU0p0mAOMcw2ngyC2bowo9m6MFsX26x0UURvLpuP_Uz-UXIJvwDvLoBNzk5DtIsL6ZFTvOuU3ix-PHNUgv0dKJrkAi2OfIjksvFr-JePP3vXpmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218733237</pqid></control><display><type>article</type><title>Discrete synaptic states define a major mechanism of synapse plasticity</title><source>Elsevier</source><creator>Montgomery, Johanna M. ; Madison, Daniel V.</creator><creatorcontrib>Montgomery, Johanna M. ; Madison, Daniel V.</creatorcontrib><description>Synapses can change their strength in response to afferent activity, a property that might underlie a variety of neural processes such as learning, network synaptic weighting, synapse formation and pruning. Recent work has shown that synapses change their strength by jumping between discrete mechanistic states, rather than by simply moving up and down in a continuum of efficacy. Coincident with this, studies have provided a framework for understanding the potential mechanistic underpinnings of synaptic plastic states. Synaptic plasticity states not only represent a new and fundamental property of CNS synapses, but also can provide a context for understanding outstanding issues in synaptic function, plasticity and development.</description><identifier>ISSN: 0166-2236</identifier><identifier>EISSN: 1878-108X</identifier><identifier>DOI: 10.1016/j.tins.2004.10.006</identifier><identifier>PMID: 15541515</identifier><identifier>CODEN: TNSCDR</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biological and medical sciences ; Brain research ; Cells ; Central nervous system ; Central Nervous System - physiology ; Central neurotransmission. Neuromudulation. Pathways and receptors ; Fundamental and applied biological sciences. Psychology ; General aspects. Models. Methods ; Models, Biological ; Nerve Tissue Proteins - metabolism ; Neuronal Plasticity - physiology ; Receptors, AMPA - metabolism ; Receptors, N-Methyl-D-Aspartate - metabolism ; Synapses - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Trends in neurosciences (Regular ed.), 2004-12, Vol.27 (12), p.744-750</ispartof><rights>2004 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Dec 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-ad1e105d1352ac3d9c18ab7e620e49601a85667d05844ed305a0eb3db18b1073</citedby><cites>FETCH-LOGICAL-c506t-ad1e105d1352ac3d9c18ab7e620e49601a85667d05844ed305a0eb3db18b1073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16299682$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15541515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montgomery, Johanna M.</creatorcontrib><creatorcontrib>Madison, Daniel V.</creatorcontrib><title>Discrete synaptic states define a major mechanism of synapse plasticity</title><title>Trends in neurosciences (Regular ed.)</title><addtitle>Trends Neurosci</addtitle><description>Synapses can change their strength in response to afferent activity, a property that might underlie a variety of neural processes such as learning, network synaptic weighting, synapse formation and pruning. Recent work has shown that synapses change their strength by jumping between discrete mechanistic states, rather than by simply moving up and down in a continuum of efficacy. Coincident with this, studies have provided a framework for understanding the potential mechanistic underpinnings of synaptic plastic states. Synaptic plasticity states not only represent a new and fundamental property of CNS synapses, but also can provide a context for understanding outstanding issues in synaptic function, plasticity and development.</description><subject>Biological and medical sciences</subject><subject>Brain research</subject><subject>Cells</subject><subject>Central nervous system</subject><subject>Central Nervous System - physiology</subject><subject>Central neurotransmission. Neuromudulation. Pathways and receptors</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Models. Methods</subject><subject>Models, Biological</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neuronal Plasticity - physiology</subject><subject>Receptors, AMPA - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Synapses - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0166-2236</issn><issn>1878-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkU-LFDEQxYMo7rj6BTxII-itx6qkk06Dl2XVVVjwsgdvIZ1UY5r-MyYZYb69aWZgwYOeAsXvVV69x9hrhD0Cqg_jPocl7TlAUwZ7APWE7VC3ukbQP56yXYFUzblQV-xFSiMANhqb5-wKpWxQotyxu08huUiZqnRa7CEHV6VsM6XK0xAWqmw123GN1Uzup11Cmqt1OLOJqsNkU5GEfHrJng12SvTq8l6zhy-fH26_1vff777d3tzXToLKtfVICNKjkNw64TuH2vYtKQ7UdArQaqlU60HqpiEvQFqgXvgedY_Qimv2_rz2ENdfR0rZzMU_TZNdaD0mo9oCKdD_BbFtO2glL-Dbv8BxPcal3GB4yVIILrZv-RlycU0p0mAOMcw2ngyC2bowo9m6MFsX26x0UURvLpuP_Uz-UXIJvwDvLoBNzk5DtIsL6ZFTvOuU3ix-PHNUgv0dKJrkAi2OfIjksvFr-JePP3vXpmQ</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Montgomery, Johanna M.</creator><creator>Madison, Daniel V.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20041201</creationdate><title>Discrete synaptic states define a major mechanism of synapse plasticity</title><author>Montgomery, Johanna M. ; Madison, Daniel V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-ad1e105d1352ac3d9c18ab7e620e49601a85667d05844ed305a0eb3db18b1073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biological and medical sciences</topic><topic>Brain research</topic><topic>Cells</topic><topic>Central nervous system</topic><topic>Central Nervous System - physiology</topic><topic>Central neurotransmission. Neuromudulation. Pathways and receptors</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Models. Methods</topic><topic>Models, Biological</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neuronal Plasticity - physiology</topic><topic>Receptors, AMPA - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Synapses - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montgomery, Johanna M.</creatorcontrib><creatorcontrib>Madison, Daniel V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in neurosciences (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montgomery, Johanna M.</au><au>Madison, Daniel V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete synaptic states define a major mechanism of synapse plasticity</atitle><jtitle>Trends in neurosciences (Regular ed.)</jtitle><addtitle>Trends Neurosci</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>27</volume><issue>12</issue><spage>744</spage><epage>750</epage><pages>744-750</pages><issn>0166-2236</issn><eissn>1878-108X</eissn><coden>TNSCDR</coden><abstract>Synapses can change their strength in response to afferent activity, a property that might underlie a variety of neural processes such as learning, network synaptic weighting, synapse formation and pruning. Recent work has shown that synapses change their strength by jumping between discrete mechanistic states, rather than by simply moving up and down in a continuum of efficacy. Coincident with this, studies have provided a framework for understanding the potential mechanistic underpinnings of synaptic plastic states. Synaptic plasticity states not only represent a new and fundamental property of CNS synapses, but also can provide a context for understanding outstanding issues in synaptic function, plasticity and development.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>15541515</pmid><doi>10.1016/j.tins.2004.10.006</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-2236 |
ispartof | Trends in neurosciences (Regular ed.), 2004-12, Vol.27 (12), p.744-750 |
issn | 0166-2236 1878-108X |
language | eng |
recordid | cdi_proquest_miscellaneous_67073608 |
source | Elsevier |
subjects | Biological and medical sciences Brain research Cells Central nervous system Central Nervous System - physiology Central neurotransmission. Neuromudulation. Pathways and receptors Fundamental and applied biological sciences. Psychology General aspects. Models. Methods Models, Biological Nerve Tissue Proteins - metabolism Neuronal Plasticity - physiology Receptors, AMPA - metabolism Receptors, N-Methyl-D-Aspartate - metabolism Synapses - metabolism Vertebrates: nervous system and sense organs |
title | Discrete synaptic states define a major mechanism of synapse plasticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20synaptic%20states%20define%20a%20major%20mechanism%20of%20synapse%20plasticity&rft.jtitle=Trends%20in%20neurosciences%20(Regular%20ed.)&rft.au=Montgomery,%20Johanna%20M.&rft.date=2004-12-01&rft.volume=27&rft.issue=12&rft.spage=744&rft.epage=750&rft.pages=744-750&rft.issn=0166-2236&rft.eissn=1878-108X&rft.coden=TNSCDR&rft_id=info:doi/10.1016/j.tins.2004.10.006&rft_dat=%3Cproquest_cross%3E67073608%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-ad1e105d1352ac3d9c18ab7e620e49601a85667d05844ed305a0eb3db18b1073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218733237&rft_id=info:pmid/15541515&rfr_iscdi=true |