Loading…

Discrete synaptic states define a major mechanism of synapse plasticity

Synapses can change their strength in response to afferent activity, a property that might underlie a variety of neural processes such as learning, network synaptic weighting, synapse formation and pruning. Recent work has shown that synapses change their strength by jumping between discrete mechani...

Full description

Saved in:
Bibliographic Details
Published in:Trends in neurosciences (Regular ed.) 2004-12, Vol.27 (12), p.744-750
Main Authors: Montgomery, Johanna M., Madison, Daniel V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c506t-ad1e105d1352ac3d9c18ab7e620e49601a85667d05844ed305a0eb3db18b1073
cites cdi_FETCH-LOGICAL-c506t-ad1e105d1352ac3d9c18ab7e620e49601a85667d05844ed305a0eb3db18b1073
container_end_page 750
container_issue 12
container_start_page 744
container_title Trends in neurosciences (Regular ed.)
container_volume 27
creator Montgomery, Johanna M.
Madison, Daniel V.
description Synapses can change their strength in response to afferent activity, a property that might underlie a variety of neural processes such as learning, network synaptic weighting, synapse formation and pruning. Recent work has shown that synapses change their strength by jumping between discrete mechanistic states, rather than by simply moving up and down in a continuum of efficacy. Coincident with this, studies have provided a framework for understanding the potential mechanistic underpinnings of synaptic plastic states. Synaptic plasticity states not only represent a new and fundamental property of CNS synapses, but also can provide a context for understanding outstanding issues in synaptic function, plasticity and development.
doi_str_mv 10.1016/j.tins.2004.10.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67073608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166223604003340</els_id><sourcerecordid>67073608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-ad1e105d1352ac3d9c18ab7e620e49601a85667d05844ed305a0eb3db18b1073</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxYMo7rj6BTxII-itx6qkk06Dl2XVVVjwsgdvIZ1UY5r-MyYZYb69aWZgwYOeAsXvVV69x9hrhD0Cqg_jPocl7TlAUwZ7APWE7VC3ukbQP56yXYFUzblQV-xFSiMANhqb5-wKpWxQotyxu08huUiZqnRa7CEHV6VsM6XK0xAWqmw123GN1Uzup11Cmqt1OLOJqsNkU5GEfHrJng12SvTq8l6zhy-fH26_1vff777d3tzXToLKtfVICNKjkNw64TuH2vYtKQ7UdArQaqlU60HqpiEvQFqgXvgedY_Qimv2_rz2ENdfR0rZzMU_TZNdaD0mo9oCKdD_BbFtO2glL-Dbv8BxPcal3GB4yVIILrZv-RlycU0p0mAOMcw2ngyC2bowo9m6MFsX26x0UURvLpuP_Uz-UXIJvwDvLoBNzk5DtIsL6ZFTvOuU3ix-PHNUgv0dKJrkAi2OfIjksvFr-JePP3vXpmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218733237</pqid></control><display><type>article</type><title>Discrete synaptic states define a major mechanism of synapse plasticity</title><source>Elsevier</source><creator>Montgomery, Johanna M. ; Madison, Daniel V.</creator><creatorcontrib>Montgomery, Johanna M. ; Madison, Daniel V.</creatorcontrib><description>Synapses can change their strength in response to afferent activity, a property that might underlie a variety of neural processes such as learning, network synaptic weighting, synapse formation and pruning. Recent work has shown that synapses change their strength by jumping between discrete mechanistic states, rather than by simply moving up and down in a continuum of efficacy. Coincident with this, studies have provided a framework for understanding the potential mechanistic underpinnings of synaptic plastic states. Synaptic plasticity states not only represent a new and fundamental property of CNS synapses, but also can provide a context for understanding outstanding issues in synaptic function, plasticity and development.</description><identifier>ISSN: 0166-2236</identifier><identifier>EISSN: 1878-108X</identifier><identifier>DOI: 10.1016/j.tins.2004.10.006</identifier><identifier>PMID: 15541515</identifier><identifier>CODEN: TNSCDR</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biological and medical sciences ; Brain research ; Cells ; Central nervous system ; Central Nervous System - physiology ; Central neurotransmission. Neuromudulation. Pathways and receptors ; Fundamental and applied biological sciences. Psychology ; General aspects. Models. Methods ; Models, Biological ; Nerve Tissue Proteins - metabolism ; Neuronal Plasticity - physiology ; Receptors, AMPA - metabolism ; Receptors, N-Methyl-D-Aspartate - metabolism ; Synapses - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Trends in neurosciences (Regular ed.), 2004-12, Vol.27 (12), p.744-750</ispartof><rights>2004 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Dec 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-ad1e105d1352ac3d9c18ab7e620e49601a85667d05844ed305a0eb3db18b1073</citedby><cites>FETCH-LOGICAL-c506t-ad1e105d1352ac3d9c18ab7e620e49601a85667d05844ed305a0eb3db18b1073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16299682$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15541515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montgomery, Johanna M.</creatorcontrib><creatorcontrib>Madison, Daniel V.</creatorcontrib><title>Discrete synaptic states define a major mechanism of synapse plasticity</title><title>Trends in neurosciences (Regular ed.)</title><addtitle>Trends Neurosci</addtitle><description>Synapses can change their strength in response to afferent activity, a property that might underlie a variety of neural processes such as learning, network synaptic weighting, synapse formation and pruning. Recent work has shown that synapses change their strength by jumping between discrete mechanistic states, rather than by simply moving up and down in a continuum of efficacy. Coincident with this, studies have provided a framework for understanding the potential mechanistic underpinnings of synaptic plastic states. Synaptic plasticity states not only represent a new and fundamental property of CNS synapses, but also can provide a context for understanding outstanding issues in synaptic function, plasticity and development.</description><subject>Biological and medical sciences</subject><subject>Brain research</subject><subject>Cells</subject><subject>Central nervous system</subject><subject>Central Nervous System - physiology</subject><subject>Central neurotransmission. Neuromudulation. Pathways and receptors</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Models. Methods</subject><subject>Models, Biological</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neuronal Plasticity - physiology</subject><subject>Receptors, AMPA - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Synapses - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0166-2236</issn><issn>1878-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkU-LFDEQxYMo7rj6BTxII-itx6qkk06Dl2XVVVjwsgdvIZ1UY5r-MyYZYb69aWZgwYOeAsXvVV69x9hrhD0Cqg_jPocl7TlAUwZ7APWE7VC3ukbQP56yXYFUzblQV-xFSiMANhqb5-wKpWxQotyxu08huUiZqnRa7CEHV6VsM6XK0xAWqmw123GN1Uzup11Cmqt1OLOJqsNkU5GEfHrJng12SvTq8l6zhy-fH26_1vff777d3tzXToLKtfVICNKjkNw64TuH2vYtKQ7UdArQaqlU60HqpiEvQFqgXvgedY_Qimv2_rz2ENdfR0rZzMU_TZNdaD0mo9oCKdD_BbFtO2glL-Dbv8BxPcal3GB4yVIILrZv-RlycU0p0mAOMcw2ngyC2bowo9m6MFsX26x0UURvLpuP_Uz-UXIJvwDvLoBNzk5DtIsL6ZFTvOuU3ix-PHNUgv0dKJrkAi2OfIjksvFr-JePP3vXpmQ</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Montgomery, Johanna M.</creator><creator>Madison, Daniel V.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20041201</creationdate><title>Discrete synaptic states define a major mechanism of synapse plasticity</title><author>Montgomery, Johanna M. ; Madison, Daniel V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-ad1e105d1352ac3d9c18ab7e620e49601a85667d05844ed305a0eb3db18b1073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biological and medical sciences</topic><topic>Brain research</topic><topic>Cells</topic><topic>Central nervous system</topic><topic>Central Nervous System - physiology</topic><topic>Central neurotransmission. Neuromudulation. Pathways and receptors</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Models. Methods</topic><topic>Models, Biological</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neuronal Plasticity - physiology</topic><topic>Receptors, AMPA - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Synapses - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montgomery, Johanna M.</creatorcontrib><creatorcontrib>Madison, Daniel V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in neurosciences (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montgomery, Johanna M.</au><au>Madison, Daniel V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete synaptic states define a major mechanism of synapse plasticity</atitle><jtitle>Trends in neurosciences (Regular ed.)</jtitle><addtitle>Trends Neurosci</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>27</volume><issue>12</issue><spage>744</spage><epage>750</epage><pages>744-750</pages><issn>0166-2236</issn><eissn>1878-108X</eissn><coden>TNSCDR</coden><abstract>Synapses can change their strength in response to afferent activity, a property that might underlie a variety of neural processes such as learning, network synaptic weighting, synapse formation and pruning. Recent work has shown that synapses change their strength by jumping between discrete mechanistic states, rather than by simply moving up and down in a continuum of efficacy. Coincident with this, studies have provided a framework for understanding the potential mechanistic underpinnings of synaptic plastic states. Synaptic plasticity states not only represent a new and fundamental property of CNS synapses, but also can provide a context for understanding outstanding issues in synaptic function, plasticity and development.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>15541515</pmid><doi>10.1016/j.tins.2004.10.006</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-2236
ispartof Trends in neurosciences (Regular ed.), 2004-12, Vol.27 (12), p.744-750
issn 0166-2236
1878-108X
language eng
recordid cdi_proquest_miscellaneous_67073608
source Elsevier
subjects Biological and medical sciences
Brain research
Cells
Central nervous system
Central Nervous System - physiology
Central neurotransmission. Neuromudulation. Pathways and receptors
Fundamental and applied biological sciences. Psychology
General aspects. Models. Methods
Models, Biological
Nerve Tissue Proteins - metabolism
Neuronal Plasticity - physiology
Receptors, AMPA - metabolism
Receptors, N-Methyl-D-Aspartate - metabolism
Synapses - metabolism
Vertebrates: nervous system and sense organs
title Discrete synaptic states define a major mechanism of synapse plasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20synaptic%20states%20define%20a%20major%20mechanism%20of%20synapse%20plasticity&rft.jtitle=Trends%20in%20neurosciences%20(Regular%20ed.)&rft.au=Montgomery,%20Johanna%20M.&rft.date=2004-12-01&rft.volume=27&rft.issue=12&rft.spage=744&rft.epage=750&rft.pages=744-750&rft.issn=0166-2236&rft.eissn=1878-108X&rft.coden=TNSCDR&rft_id=info:doi/10.1016/j.tins.2004.10.006&rft_dat=%3Cproquest_cross%3E67073608%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-ad1e105d1352ac3d9c18ab7e620e49601a85667d05844ed305a0eb3db18b1073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218733237&rft_id=info:pmid/15541515&rfr_iscdi=true