Loading…

Interior- and surface-bound excess electron states in large water cluster anions

We present the results of mixed quantum/classical simulations on relaxed thermal nanoscale water cluster anions, ( H 2 O ) n − , with n = 200 , 500, 1000, and 8000. By using initial equilibration with constraints, we investigate stable/metastable negatively charged water clusters with both surface-b...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2009-03, Vol.130 (12), p.124319-124319-7
Main Authors: Madarász, Ádám, Rossky, Peter J., Turi, László
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present the results of mixed quantum/classical simulations on relaxed thermal nanoscale water cluster anions, ( H 2 O ) n − , with n = 200 , 500, 1000, and 8000. By using initial equilibration with constraints, we investigate stable/metastable negatively charged water clusters with both surface-bound and interior-bound excess electron states. Characterization of these states is performed in terms of geometrical parameters, energetics, and optical absorption spectroscopy of the clusters. The calculations provide data characterizing these states in the gap between previously published calculations and experiments on smaller clusters and the limiting cases of either an excess electron in bulk water or an excess electron at an infinite water/air interface. The present results are in general agreement with previous simulations and provide a consistent picture of the evolution of the physical properties of water cluster anions with size over the entire size range, including results for vertical detachment energies and absorption spectra that would signify their presence. In particular, the difference in size dependence between surface-bound and interior-bound state absorption spectra is dramatic, while for detachment energies the dependence is qualitatively the same.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.3094732