Loading…

Beta 2-adrenergic receptor regulation of human neutrophil function is sexually dimorphic

While the mechanisms underlying the marked sexual dimorphism in inflammatory diseases are not well understood, the sexually dimorphic sympathoadrenal axis profoundly affects the inflammatory response. We tested whether adrenergic receptor-mediated activation of human neutrophil function is sexually...

Full description

Saved in:
Bibliographic Details
Published in:British journal of pharmacology 2004-12, Vol.143 (8), p.1033-1041
Main Authors: de Coupade, Catherine, Gear, Robert W, Dazin, Paul F, Sroussi, Herve Y, Green, Paul G, Levine, Jon D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While the mechanisms underlying the marked sexual dimorphism in inflammatory diseases are not well understood, the sexually dimorphic sympathoadrenal axis profoundly affects the inflammatory response. We tested whether adrenergic receptor-mediated activation of human neutrophil function is sexually dimorphic, since neutrophils provide the first line of defense in the inflammatory response. There was a marked sexual dimorphism in beta(2)-adrenergic receptor binding, using the specific beta(2)-adrenergic receptor ligand, [(3)H]-dihydroalprenolol, with almost three times more binding sites on neutrophils from females (20,878 +/- 2470) compared to males (7331 +/- 3179). There was also a marked sexual dimorphism in the effects of isoprenaline, a beta-adrenergic receptor agonist, which increased nondirected locomotion (chemokinesis) in neutrophils obtained from females, while having no effect on neutrophils from males. Isoprenaline stimulated the release of a chemotactic factor from neutrophils obtained from females, but not from males. This chemotactic factor acts on the G protein-coupled CXC chemokine receptor 2 (CXCR2) chemokine receptor, since an anti-CXCR2 antibody and the selective nonpeptide CXCR2 antagonist SB225002, inhibited chemotaxis produced by this factor. While interleukin- (IL-) 8 is a principal CXCR2 ligand, isoprenaline did not produce an increase in IL-8 release from neutrophils. IL-8-induced chemotaxis was inhibited in a sexually dimorphic manner by isoprenaline, which also stimulated release of a mediator from neutrophils that induced chemotaxis, that was inhibited by anti-CXCR2 antibodies. These findings indicate an important role for adrenergic receptors in the modulation of neutrophil trafficking, which could contribute to sex-differences in the inflammatory response.
ISSN:0007-1188
1476-5381
DOI:10.1038/sj.bjp.0705972