Loading…
Quasistationary field of thermal emission and near-field radiometry
We provide a theory of radiometry measurements of the quasistationary (near) field of thermal emission from a heated conducting medium. It explains why the Rytov effect, which essentially is a drastic growth of the thermal field energy near the medium surface, cannot be detected experimentally. Howe...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2004-11, Vol.70 (5 Pt 2), p.056601-056601, Article 056601 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We provide a theory of radiometry measurements of the quasistationary (near) field of thermal emission from a heated conducting medium. It explains why the Rytov effect, which essentially is a drastic growth of the thermal field energy near the medium surface, cannot be detected experimentally. However, we discovered a measurable near-field effect: the effective depth of formation of the received emission proves to be less than the skin-layer depth, depending on the size of the receiving antenna and its height above the surface. For such measurements highly effective antennas of a small aperture size are necessary. We developed and investigated a variety of microwave antennas whose parameters were fairly suitable for near-field radiometry. The measurements conducted with these antennas yielded experimental evidence of the fact that the quasistationary thermal field really exists. Near-field radiometry opens further opportunities for investigating media. In particular, we demonstrate here a technique for retrieval of the subsurface temperature profile in water with the help of near-field measurements. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.70.056601 |