Loading…

Quasistationary field of thermal emission and near-field radiometry

We provide a theory of radiometry measurements of the quasistationary (near) field of thermal emission from a heated conducting medium. It explains why the Rytov effect, which essentially is a drastic growth of the thermal field energy near the medium surface, cannot be detected experimentally. Howe...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2004-11, Vol.70 (5 Pt 2), p.056601-056601, Article 056601
Main Authors: Reznik, A N, Vaks, V L, Yurasova, N V
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We provide a theory of radiometry measurements of the quasistationary (near) field of thermal emission from a heated conducting medium. It explains why the Rytov effect, which essentially is a drastic growth of the thermal field energy near the medium surface, cannot be detected experimentally. However, we discovered a measurable near-field effect: the effective depth of formation of the received emission proves to be less than the skin-layer depth, depending on the size of the receiving antenna and its height above the surface. For such measurements highly effective antennas of a small aperture size are necessary. We developed and investigated a variety of microwave antennas whose parameters were fairly suitable for near-field radiometry. The measurements conducted with these antennas yielded experimental evidence of the fact that the quasistationary thermal field really exists. Near-field radiometry opens further opportunities for investigating media. In particular, we demonstrate here a technique for retrieval of the subsurface temperature profile in water with the help of near-field measurements.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.70.056601