Loading…
The roles of surface chemistry and topography in the strength and rate of osseointegration of titanium implants in bone
The present study investigated the effects of surface chemistry and topography on the strength and rate of osseointegration of titanium implants in bone. Three groups of implants were compared: (1) machine‐turned implants (turned implants), (2) machine‐turned and aluminum oxide‐blasted implants (bla...
Saved in:
Published in: | Journal of Biomedical Materials Research Part B 2009-06, Vol.89A (4), p.942-950 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present study investigated the effects of surface chemistry and topography on the strength and rate of osseointegration of titanium implants in bone. Three groups of implants were compared: (1) machine‐turned implants (turned implants), (2) machine‐turned and aluminum oxide‐blasted implants (blasted implants), and (3) implants that were machine‐turned, aluminum oxide‐blasted, and processed with the micro‐arc oxidation method (Mg implants). Three and six weeks after implant insertion in rabbit tibiae, the implant osseointegration strength and rate were evaluated. Surface chemistry revealed characteristic differences of nine at.% Mg for Mg implants and 11 at.% Al for blasted implants. In terms of surface roughness, there was no difference between Mg implants and blasted implants in developed surface ratio (Sdr; p = 0.69) or summit density (Sds; p = 0.96), but Mg implants had a significantly lower arithmetic average height deviation (Sa) value than blasted implants (p = 0.007). At both 3 and 6 weeks, Mg implants demonstrated significantly higher osseointegration strength compared with turned (p = 0.0001, p = 0.0001) and blasted (p = 0.0001, p = 0.035) implants, whereas blasted implants showed significantly higher osseointegration than turned implants at 6 weeks (p = 0.02) but not at 3 weeks (p = 0.199). The present results not only support the hypothesis that biochemical bonding facilitates rapid and strong integration of implants in bone, but also provide evidence for biochemical bonding theory previously proposed by Sul. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009 |
---|---|
ISSN: | 1549-3296 1097-4636 0021-9304 1552-4965 1552-4981 |
DOI: | 10.1002/jbm.a.32041 |