Loading…

Photochemical Internalization of Bleomycin is Superior to Photodynamic Therapy Due to the Therapeutic Effect in the Tumor Periphery

Photochemical internalization (PCI) is under development for clinical use in treatment of soft tissue sarcomas and other solid tumors. PCI may release endocytosed bleomycin (BLM) into the cytosol by photochemical rupture of the endocytic vesicles. In this study, the human fibrosarcoma xenograft HT10...

Full description

Saved in:
Bibliographic Details
Published in:Photochemistry and photobiology 2009-05, Vol.85 (3), p.740-749
Main Authors: Norum, Ole-Jacob, Gaustad, Jon-Vidar, Angell-Petersen, Even, Rofstad, Einar K., Peng, Qian, Giercksky, Karl-Erik, Berg, Kristian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photochemical internalization (PCI) is under development for clinical use in treatment of soft tissue sarcomas and other solid tumors. PCI may release endocytosed bleomycin (BLM) into the cytosol by photochemical rupture of the endocytic vesicles. In this study, the human fibrosarcoma xenograft HT1080 was transplanted into the leg muscle of athymic mice. The photosensitizer disulfonated aluminum phthalocyanine (AlPcS2a) and BLM were systemically administrated 48 h and 30 min, respectively, prior to light exposure at 670 nm (30 J cm−2). The purposes of this study were to evaluate the treatment response to AlPcS2a‐photodynamic therapy (PDT) and AlPcS2a‐PDT in combination with BLM (i.e. PCI of BLM) in an orthotopic, invasive and clinically relevant tumor model and to explore the underlying response mechanisms caused by PDT and PCI of BLM. The treatment response was evaluated by measuring tumor growth, contrast‐enhanced magnetic resonance imaging (CE‐MRI), histology and fluorescence microscopy. The results show that PCI of BLM is superior to PDT in inducing tumor growth retardation and acts synergistically as compared to the individual treatment modalities. The CE‐MRI analyses 2 h after AlPcS2a‐PDT and PCI of BLM identified a treatment‐induced nonperfused central zone of the tumor and a well‐perfused peripheral zone. While there were no differences in the vascular response between PDT and PCI, the histological analyses showed that PDT caused necrosis in the tumor center and viable tumor cells were found in the tumor periphery. PCI caused larger necrotic areas and the regrowth in the peripheral zone was almost completely inhibited after PCI. The results indicate that PDT is less efficient in the tumor periphery than in the tumor center and that the treatment effect of PCI is superior to PDT in the tumor periphery.
ISSN:0031-8655
1751-1097
DOI:10.1111/j.1751-1097.2008.00477.x