Loading…
gene for the heat-shock protein HSP100 is induced by blue light and heat-shock in the fungus Phycomyces blakesleeanus
We cloned and sequenced the Phycomyces hspA gene. The hspA gene product is a 901-amino-acid protein member of the clpB/HSP100 family. HSP100 proteins are ATPases involved in high-temperature tolerance, proteolysis, and protein disaggregation. Phycomyces HSP100 is composed of a domain presumably invo...
Saved in:
Published in: | Current genetics 2004-11, Vol.46 (5), p.295-303 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We cloned and sequenced the Phycomyces hspA gene. The hspA gene product is a 901-amino-acid protein member of the clpB/HSP100 family. HSP100 proteins are ATPases involved in high-temperature tolerance, proteolysis, and protein disaggregation. Phycomyces HSP100 is composed of a domain presumably involved in protein-protein interactions and two ATP-binding domains. The hspA promoter contains three heat-shock elements that are presumably involved in the activation of hspA after heat-shock. In addition, four short sequences are present in the hspA promoter and in the promoter of the photoinducible genes carB and carRA; and these are candidates as binding sites for light-regulated transcription factors. Blue light can increase transcription of the hspA gene 10-fold, with a threshold of 1 J/m2. The threshold for hspA photoactivation is 10(4) times higher than the thresholds for blue-light regulation of sporangiophore development and photocarotenogenesis, which suggests that there are differences in the photosensory systems for gene photoactivation and mycelial photoresponses. A heat-shock of 30 min at 34 degrees C or 42 degrees C increased hspA gene activity 160-fold. The differences in maximum hspA gene transcription by blue light and heatshock suggest the presence of different regulatory mechanisms. |
---|---|
ISSN: | 0172-8083 1432-0983 |
DOI: | 10.1007/s00294-004-0534-4 |