Loading…

Hydrothermal Synthesis of Microscaled Cu@C Polyhedral Composites and Their Sensitivity to Convergent Electron Beams

Copper microparticles (2−5 um) encapsulated in carbonaceous shell polyhedral composites were mildly prepared via a one-pot hydrothermal process using copper nitrate, glucose, and sodium citrate at 150 °C, in which the glucose was found to play reducer and graphite source roles during the formation o...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2009-06, Vol.25 (11), p.6363-6367
Main Authors: Hao, Qin, Xu, Liqiang, Li, Guangda, Qian, Yitai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Copper microparticles (2−5 um) encapsulated in carbonaceous shell polyhedral composites were mildly prepared via a one-pot hydrothermal process using copper nitrate, glucose, and sodium citrate at 150 °C, in which the glucose was found to play reducer and graphite source roles during the formation of these core−shell-like composites. Thermal stability results indicated that their weights remain almost unchanged below 240 °C in ambient atmosphere. It is interesting that the copper microparticles could be partially released out and translated into monodisperse Cu nanoparticles around the initial composites under the convergent electron beams in a transmission electron microscope (TEM). This phenomenon is an appealing discovery, which might endow the Cu@C composite with new functions; for example, it might be applied as a sensitive detector for the leakage of electron beams or other substances for the sake of being a safeguard. In addition, the corresponding hollow carbonaceous polyhedra were also obtained after the acid treatment, which might be used as a template to fabricate other kinds of polyhedra.
ISSN:0743-7463
1520-5827
DOI:10.1021/la8041499