Loading…
Highly dense protein layers confirmed by atomic force microscopy and quartz crystal microbalance
Protein adsorption on a gold surface is investigated by comparing the results of quartz crystal microbalance method and atomic force microscopy. The adsorption of streptavidin on functional gold surfaces is directly monitored by a quartz crystal microbalance, and confirmed by atomic force microscopy...
Saved in:
Published in: | Journal of Bioscience and Bioengineering 2004, Vol.97 (2), p.138-140 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Protein adsorption on a gold surface is investigated by comparing the results of quartz crystal microbalance method and atomic force microscopy. The adsorption of streptavidin on functional gold surfaces is directly monitored by a quartz crystal microbalance, and confirmed by atomic force microscopy. For this investigation, a modified gold substrate is fabricated to obtain a topographic image of streptavidin molecules. Both methods show a correlation in terms of the highly dense protein single-layer formation, and the modified gold electrode shows a slightly denser protein layer formation because of the difference in substrate geometry as compared with that of a mica surface. |
---|---|
ISSN: | 1389-1723 1347-4421 |
DOI: | 10.1016/S1389-1723(04)70182-6 |