Loading…

Evolution of duplications in the transferrin family of proteins

The transferrin family is a group of proteins, defined by conserved amino acid motifs and putative function, found in both vertebrates and invertebrates. Included in this group are molecules known to bind iron, including serum transferrin, ovotransferrin, lactotransferrin, and melanotransferrin (MTF...

Full description

Saved in:
Bibliographic Details
Published in:Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2005, Vol.140 (1), p.11-25
Main Authors: Lambert, Lisa A., Perri, Holly, Meehan, T.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The transferrin family is a group of proteins, defined by conserved amino acid motifs and putative function, found in both vertebrates and invertebrates. Included in this group are molecules known to bind iron, including serum transferrin, ovotransferrin, lactotransferrin, and melanotransferrin (MTF). Additional members of this family include inhibitor of carbonic anhydrase (ICA; mammals), major yolk protein (sea urchins), saxiphilin (frog), pacifastin (crayfish), and TTF-1 (algae). Most family members contain two lobes (N and C) of around 340 amino acids, the result of an ancient duplication event. In this article, we review the known functions of these proteins and speculate as to when the different homologs arose. From multiple-sequence alignments and neighbor-joining trees using 71 transferrin family sequences from 51 different species, including several novel sequences found in the Takifugu and Ciona genome databases, we conclude that melanotransferrins are much older (>670 MY) and more pervasive than previously thought, and the serum transferrin/melanotransferrin split may have occurred not long after lobe duplication. All subsequent duplication events diverged from the serum transferrin gene. The creation of such a large multiple-sequence alignment provides important information and could, in the future, highlight the role of specific residues in protein function.
ISSN:1096-4959
1879-1107
DOI:10.1016/j.cbpc.2004.09.012