Loading…

Delocalization by disorder in layered systems

Motivated by anomalously large conductivity anisotropy in layered materials, we propose a simple model of randomly spaced potential barriers (mimicking stacking faults) with isotropic impurities in between the barriers. We solve this model both numerically and analytically by utilizing an exact solu...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2009-05, Vol.102 (21), p.216601-216601, Article 216601
Main Authors: Maslov, Dmitrii L, Yudson, Vladimir I, Somoza, Andres M, Ortuño, Miguel
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Motivated by anomalously large conductivity anisotropy in layered materials, we propose a simple model of randomly spaced potential barriers (mimicking stacking faults) with isotropic impurities in between the barriers. We solve this model both numerically and analytically by utilizing an exact solution for the conductivity of a one-dimensional disordered system. In the absence of bulk disorder, electron motion in the out-of-plane direction is localized. Bulk disorder destroys one-dimensional localization. As a result, the out-of-plane conductivity is finite and scales linearly with the scattering rate by bulk impurities until planar and bulk disorder become comparable. The ac out-of-plane conductivity is of a manifestly non-Drude form: the real part starts from finite value at zero frequency and has a maximum at the frequency corresponding to the scattering rate by potential barriers.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.102.216601