Loading…

Square-lattice site percolation at increasing ranges of neighbor bonds

We report site percolation thresholds for square lattice with neighbor bonds at various increasing ranges. Using Monte Carlo techniques we found that nearest neighbors (NN), next-nearest neighbors (NNN), next-next-nearest neighbors (4N), and fifth-nearest neighbors (6N) yield the same pc = 0.592......

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2005-01, Vol.71 (1 Pt 2), p.016125-016125, Article 016125
Main Authors: Malarz, Krzysztof, Galam, Serge
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report site percolation thresholds for square lattice with neighbor bonds at various increasing ranges. Using Monte Carlo techniques we found that nearest neighbors (NN), next-nearest neighbors (NNN), next-next-nearest neighbors (4N), and fifth-nearest neighbors (6N) yield the same pc = 0.592... . The fourth-nearest neighbors (5N) give pc = 0.298... . This equality is proved to be mathematically exact using symmetry argument. We then consider combinations of various kinds of neighborhoods with (NN+NNN), (NN+4N), (NN+NNN+4N), and (NN+5N). The calculated associated thresholds are respectively pc = 0.407..., 0.337..., 0.288..., and 0.234... . The existing Galam-Mauger universal formula for percolation thresholds does not reproduce the data showing dimension and coordination number are not sufficient to build a universal law which extends to complex lattices.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.71.016125