Loading…
Square-lattice site percolation at increasing ranges of neighbor bonds
We report site percolation thresholds for square lattice with neighbor bonds at various increasing ranges. Using Monte Carlo techniques we found that nearest neighbors (NN), next-nearest neighbors (NNN), next-next-nearest neighbors (4N), and fifth-nearest neighbors (6N) yield the same pc = 0.592......
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2005-01, Vol.71 (1 Pt 2), p.016125-016125, Article 016125 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report site percolation thresholds for square lattice with neighbor bonds at various increasing ranges. Using Monte Carlo techniques we found that nearest neighbors (NN), next-nearest neighbors (NNN), next-next-nearest neighbors (4N), and fifth-nearest neighbors (6N) yield the same pc = 0.592... . The fourth-nearest neighbors (5N) give pc = 0.298... . This equality is proved to be mathematically exact using symmetry argument. We then consider combinations of various kinds of neighborhoods with (NN+NNN), (NN+4N), (NN+NNN+4N), and (NN+5N). The calculated associated thresholds are respectively pc = 0.407..., 0.337..., 0.288..., and 0.234... . The existing Galam-Mauger universal formula for percolation thresholds does not reproduce the data showing dimension and coordination number are not sufficient to build a universal law which extends to complex lattices. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.71.016125 |