Loading…

Root of the Eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data

Extensive studies aiming to establish the structure and root of the Eukaryota tree by phylogenetic analyses of molecular sequences have thus far not resulted in a generally accepted tree. To re-examine the eukaryotic phylogeny using alternative genes, and to obtain a more robust inference for the ro...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology and evolution 2005-03, Vol.22 (3), p.409-420
Main Authors: Arisue, Nobuko, Hasegawa, Masami, Hashimoto, Tetsuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extensive studies aiming to establish the structure and root of the Eukaryota tree by phylogenetic analyses of molecular sequences have thus far not resulted in a generally accepted tree. To re-examine the eukaryotic phylogeny using alternative genes, and to obtain a more robust inference for the root of the tree as well as the relationship among major eukaryotic groups, we sequenced the genes encoding isoleucyl-tRNA and valyl-tRNA synthetases, cytosolic-type heat shock protein 90, and the largest subunit of RNA polymerase II from several protists. Combined maximum likelihood analyses of 22 protein-coding genes including the above four genes clearly demonstrated that Diplomonadida and Parabasala shared a common ancestor in the rooted tree of Eukaryota, but only when the fast-evolving sites were excluded from the original data sets. The combined analyses, together with recent findings on the distribution of a fused dihydrofolate reductase-thymidylate synthetase gene, narrowed the possible position of the root of the Eukaryota tree on the branch leading to Opisthokonta or to the common ancestor of Diplomonadida/Parabasala. However, the analyses did not agree with the position of the root located on the common ancestor of Opisthokonta and Amoebozoa, which was argued by Stechmann and Cavalier-Smith [Curr. Biol. 13:R665-666, 2003] based on the presence or absence of a three-gene fusion of the pyrimidine biosynthetic pathway: carbamoyl-phosphate synthetase II, dihydroorotase, and aspartate carbamoyltransferase. The presence of the three-gene fusion recently found in the Cyanidioschyzon merolae (Rhodophyta) genome sequence data supported our analyses against the Stechmann and Cavalier-Smith-rooting in 2003.
ISSN:0737-4038
1537-1719
DOI:10.1093/molbev/msi023