Loading…

Soft tissue artefact assessment in humeral axial rotation

The accuracy of upper-limb kinematic data acquired from optoelectronic systems with retro-reflective markers is poor, mainly due to soft tissue artefact (STA). For the upper-arm, humeral internal/external rotation (HIER) is the movement most affected by STA, which is measured as a percentile fractio...

Full description

Saved in:
Bibliographic Details
Published in:Gait & posture 2005-04, Vol.21 (3), p.341-349
Main Authors: Cutti, Andrea Giovanni, Paolini, Gabriele, Troncossi, Marco, Cappello, Angelo, Davalli, Angelo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The accuracy of upper-limb kinematic data acquired from optoelectronic systems with retro-reflective markers is poor, mainly due to soft tissue artefact (STA). For the upper-arm, humeral internal/external rotation (HIER) is the movement most affected by STA, which is measured as a percentile fraction ( K) of the effective humeral axial rotation performed. The aim of this work was to quantify STA during HIERs, with independently varying attitude of the humerus and elbow flexion, and to test the possibility of estimating its mean value over the tested upper-limb orientations using one simple trial. Six able-bodied subjects performed a series of HIERs in combination with elbow flexion for different humeral planes and degrees of elevation. During the trials the instantaneous attitudes of two humeral anatomical frames were compared, one being affected by the STA to be measured, and the other assumed as the gold standard. K was found to range from 20% to 48% of the effective humeral axial rotation performed, depending on the subject, humeral attitude and elbow flexion. These last two factors comparably affect STA and resulted in mean K coefficients of variation among the subjects of about 9% and 7%, respectively. Common patterns of K with elbow flexion and humerus elevation are discussed. The data also show that the mean of K of a subject is very close to the value assessed in a specific upper-limb configuration consistent among the subjects. This result from this study could be used to build up a time-saving STA compensation procedure suitable for clinical applications.
ISSN:0966-6362
1879-2219
DOI:10.1016/j.gaitpost.2004.04.001