Loading…
Isocyanato- and Methacryloxysilanes Promote Bis-GMA Adhesion to Titanium
In dentistry, adhesion promotion with 3-methacryloyloxypropyltrimethoxysilane is usually sufficient, but its hydrolytic stability is a continuous concern. The hydrolytic stability of an alternative, 3-isocyanatopropyltriethoxysilane, was compared with that of conventional 3-methacryloyloxypropyltrim...
Saved in:
Published in: | Journal of dental research 2005-04, Vol.84 (4), p.360-364 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In dentistry, adhesion promotion with 3-methacryloyloxypropyltrimethoxysilane is usually sufficient, but its hydrolytic stability is a continuous concern. The hydrolytic stability of an alternative, 3-isocyanatopropyltriethoxysilane, was compared with that of conventional 3-methacryloyloxypropyltrimethoxysilane. Two silanes, both in 0.1 and 1.0 vol-% in ethanol-water, were evaluated in the attachment of an experimental bis-phenol-A-diglycidyldimethacrylate (Bis-GMA) resin to grit-blasted (with two different systems) titanium. Silane hydrolysis was monitored by FTIR spectrometry. Bis-GMA resin was applied and photo-polymerized on titanium. The specimens were thermocycled (6000 cycles, 5–55°C). Surface analysis was carried out with scanning electron microscopy. Statistical analysis (ANOVA) showed that the highest shear bond was achieved with 0.1% 3-isocyanatopropyltriethoxysilane (12.5 MPa) with silica-coating, and the lowest with 1.0% 3-methacryloyloxypropyltrimethoxysilane (3.4 MPa) with alumina-coating. The silane, its concentration, and the grit-blasting method significantly affected the shear bond strength (p < 0.05). SEM images indicated cohesive failure of bonding, and, in conclusion, 3-isocyanatopropyltriethoxysilane is a potential coupling agent. |
---|---|
ISSN: | 0022-0345 1544-0591 |
DOI: | 10.1177/154405910508400413 |