Loading…

Isocyanato- and Methacryloxysilanes Promote Bis-GMA Adhesion to Titanium

In dentistry, adhesion promotion with 3-methacryloyloxypropyltrimethoxysilane is usually sufficient, but its hydrolytic stability is a continuous concern. The hydrolytic stability of an alternative, 3-isocyanatopropyltriethoxysilane, was compared with that of conventional 3-methacryloyloxypropyltrim...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dental research 2005-04, Vol.84 (4), p.360-364
Main Authors: Matinlinna, J.P., Lassila, L.V.J., Kangasniemi, I., Vallittu, P.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In dentistry, adhesion promotion with 3-methacryloyloxypropyltrimethoxysilane is usually sufficient, but its hydrolytic stability is a continuous concern. The hydrolytic stability of an alternative, 3-isocyanatopropyltriethoxysilane, was compared with that of conventional 3-methacryloyloxypropyltrimethoxysilane. Two silanes, both in 0.1 and 1.0 vol-% in ethanol-water, were evaluated in the attachment of an experimental bis-phenol-A-diglycidyldimethacrylate (Bis-GMA) resin to grit-blasted (with two different systems) titanium. Silane hydrolysis was monitored by FTIR spectrometry. Bis-GMA resin was applied and photo-polymerized on titanium. The specimens were thermocycled (6000 cycles, 5–55°C). Surface analysis was carried out with scanning electron microscopy. Statistical analysis (ANOVA) showed that the highest shear bond was achieved with 0.1% 3-isocyanatopropyltriethoxysilane (12.5 MPa) with silica-coating, and the lowest with 1.0% 3-methacryloyloxypropyltrimethoxysilane (3.4 MPa) with alumina-coating. The silane, its concentration, and the grit-blasting method significantly affected the shear bond strength (p < 0.05). SEM images indicated cohesive failure of bonding, and, in conclusion, 3-isocyanatopropyltriethoxysilane is a potential coupling agent.
ISSN:0022-0345
1544-0591
DOI:10.1177/154405910508400413